Rapidity dependence of charged pion production at relativistic energies using Tsallis statistics

Regular Article - Experimental Physics

Abstract.

Transverse momentum distributions of charged pions produced in Au+Au collisions at 62.4GeV, 130GeV, 200GeV, Cu+Cu and d+Au collisions at 200GeV, p+p collisions at 62.4 and 200GeV and Pb+Pb collisions at 17.3GeV are studied using the Tsallis distribution as a parametrization. The non-extensivity parameter and Tsallis volume increase with energy, while the Tsallis temperature shows a decrease at higher energies. Using BRAHMS \( p_T\) spectra obtained in Au+Au collisions at 62.4GeV and 200GeV, Tsallis fit parameters are obtained on a very wide rapidity range. Results are compared with p+p and Cu+Cu data and changes of Tsallis parameters with rapidity and energy are investigated. We found that non-extensivity parameter q shows a decrease from midrapidity to forward rapidities for all the studied systems. Tsallis volume, V , increases with the system size from p+p, Cu+Cu to Au+Au, both in central rapidity region and at forward rapidities. The values of temperatures increase with rapidity, but the \( T/\cosh(y)\) ratio is constant as a function of rapidity.

References

  1. 1.
    E. Shuryak, Nucl. Phys. Proc. Suppl. 195, 111 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    J. Rafelski, J. Letessier, Eur. Phys. J. A 29, 107 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    A. Baran, W. Broniowski, W. Florkowski, Acta Phys. Pol. B 35, 779 (2004)ADSGoogle Scholar
  5. 5.
    J. Cleymans, B. Kampfer, M. Kaneta, S. Wheaton, N. Xu, Phys. Rev. C 71, 054901 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    F. Becattini, M. Gazdzicki, A. Keranen, R. Stock, Phys. Rev. C 69, 024905 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    C. Tsallis, R.S. Mendes, A.R. Plastina, Physics A 261, 534 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. D 83, 052004 (2011)CrossRefGoogle Scholar
  10. 10.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 75, 064901 (2007)Google Scholar
  11. 11.
    ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 693, 53 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    ATLAS Collaboration (G. Aad et al.), New J. Phys. 13, 053033 (2011)CrossRefGoogle Scholar
  13. 13.
    CMS Collaboration (V. Khachatryan et al.), JHEP 02, 041 (2010)Google Scholar
  14. 14.
    BRAHMS Collaboration (M. Adamczyk et al.), Nucl. Instrum. Methods A 499, 437 (2003)CrossRefGoogle Scholar
  15. 15.
    J. Cleymans, D. Worku, J. Phys. G 39, 025006 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    STAR Collaboration (B. Abelev et al.), Phys. Rev. C 79, 034909 (2009)CrossRefGoogle Scholar
  18. 18.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000) arXiv:hep-ph/9908459 ADSCrossRefGoogle Scholar
  20. 20.
    G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 48, 161 (2012) arXiv:1203.4452 [hep-ph]ADSCrossRefGoogle Scholar
  21. 21.
    PHENIX Collaboration (K. Adcox et al.), Phys. Rev. Lett. 86, 3500 (2001)CrossRefGoogle Scholar
  22. 22.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 91, 052303 (2003)CrossRefGoogle Scholar
  23. 23.
    BRAHMS Collaboration (I. Arsene et al.), Phys. Lett. B 687, 36 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    PHENIX Collaboration (K. Adcox et al.), Phys. Rev. C 69, 024904 (2004)CrossRefGoogle Scholar
  25. 25.
    BRAHMS Collaboration (I. Arsene et al.), Phys. Rev. Lett. 94, 162301 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    BRAHMS Collaboration (I. Arsene et al.), Phys. Rev. C 94, 014907 (2016) arXiv:1602.01183 [nucl-ex]ADSCrossRefGoogle Scholar
  27. 27.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 74, 024904 (2006)CrossRefGoogle Scholar
  28. 28.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 83, 064903 (2011)CrossRefGoogle Scholar
  29. 29.
    NA49 Collaboration (C. Alt et al.), Phys. Rev. C 77, 034906 (2008)CrossRefGoogle Scholar
  30. 30.
    M. Rybczynski, Z. Wlodarczyk, Eur. Phys. J. C 74, 2785 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett. B 723, 351 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    G. Wilk, Z. Wlodarczyk, Phys. Rev. C 79, 054903 (2009) arXiv:0902.3922 [hep-ph]ADSCrossRefGoogle Scholar
  33. 33.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    BRAHMS Collaboration (I. Arsene et al.), Phys. Rev. Lett. 98, 252001 (2007)CrossRefGoogle Scholar
  35. 35.
    BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 90, 102301 (2003)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.University of Bucharest, Faculty of PhysicsBucharest - MagureleRomania
  2. 2.Institute of Space ScienceBucharest - MagureleRomania

Personalised recommendations