Transverse-momentum spectra and nuclear modification factor using Boltzmann Transport Equation with flow in Pb+Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV

  • Sushanta Tripathy
  • Arvind Khuntia
  • Swatantra Kumar Tiwari
  • Raghunath Sahoo
Regular Article - Theoretical Physics


In the continuation of our previous work, the transverse-momentum (\(p_{T}\)) spectra and nuclear modification factor (\(R_{AA}\)) are derived using the relaxation time approximation of Boltzmann Transport Equation (BTE). The initial \(p_{T}\)-distribution used to describe p + p collisions has been studied with the perturbative-Quantum Chromodynamics (pQCD) inspired power-law distribution, Hagedorn's empirical formula and with the Tsallis non-extensive statistical distribution. The non-extensive Tsallis distribution is observed to describe the complete range of the transverse-momentum spectra. The Boltzmann-Gibbs Blast Wave (BGBW) distribution is used as the equilibrium distribution in the present formalism, to describe the \(p_{T}\)-distribution and nuclear modification factor in nucleus-nucleus collisions. The experimental data for Pb+Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV at the Large Hadron Collider at CERN have been analyzed for pions, kaons, protons, \(K^{\ast0}\) and \(\phi\). It is observed that the present formalism while explaining the transverse-momentum spectra up to 5 GeV/c, explains the nuclear modification factor very well up to 8 GeV/c in \(p_{T}\) for all these particles except for protons. \(R_{AA}\) is found to be independent of the degree of non-extensivity, \(q_{pp}\) after \(p_{T} \sim 8\) GeV/c.


  1. 1.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 101, 232301 (2008)CrossRefGoogle Scholar
  2. 2.
    R.J. Glauber, G. Matthiae, Nucl. Phys. B 21, 135 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 072301 (2003)CrossRefGoogle Scholar
  4. 4.
    ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 696, 30 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S. Tripathy, T. Bhattacharyya, P. Garg, P. Kumar, R. Sahoo, J. Cleymans, Eur. Phys. J. A 52, 289 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    T. Bhattacharyya, P. Garg, R. Sahoo, P. Samantray, Eur. Phys. J. A 52, 283 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics (John Wiley and Sons, New York, 1975)Google Scholar
  8. 8.
    W. Florkowski, R. Ryblewski, Phys. Rev. C 93, 064903 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    P. Braun-Munzinger et al., Phys. Lett. B 344, 43 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    PHENIX Collaboration (K. Adcox et al.), Phys. Rev. C 69, 024904 (2004)CrossRefGoogle Scholar
  12. 12.
    J. Cleymans, D. Worku, J. Phys. G 39, 025006 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    CERN ROOT V.5.34/32 (June 23, 2015) package:
  14. 14.
    ALICE Collaboration (B.B. Abelev et al.), Phys. Lett. B 736, 196 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    ALICE Collaboration (J. Adam), arXiv:1702.00555 [nucl-ex]

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sushanta Tripathy
    • 1
  • Arvind Khuntia
    • 1
  • Swatantra Kumar Tiwari
    • 1
  • Raghunath Sahoo
    • 1
  1. 1.Discipline of Physics, School of Basic SciencesIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations