Production of proton-rich nuclei around Z = 84-90 in fusion-evaporation reactions

  • Peng-Hui Chen
  • Zhao-Qing Feng
  • Fei Niu
  • Ya-Fei Guo
  • Hong-Fei Zhang
  • Jun-Qing Li
  • Gen-Ming Jin
Regular Article - Theoretical Physics

Abstract.

Within the framework of the dinuclear system model, production cross sections of proton-rich nuclei with charged numbers of Z = 84-90 are investigated systematically. Possible combinations with the 28Si, 32S, 40Ar bombarding the target nuclides 165Ho, 169Tm, 170-174Yb, 175,176Lu, 174, 176-180Hf and 181Ta are analyzed thoroughly. The optimal excitation energies and evaporation channels are proposed to produce the proton-rich nuclei. The systems are feasible to be constructed in experiments. It is found that the neutron shell closure of N = 126 is of importance during the evaporation of neutrons. The experimental excitation functions in the 40Ar induced reactions can be nicely reproduced. The charged particle evaporation is comparable with neutrons in cooling the excited proton-rich nuclei, in particular for the channels with \(\alpha\) and proton evaporation. The production cross section increases with the mass asymmetry of colliding systems because of the decrease of the inner fusion barrier. The channels with pure neutron evaporation depend on the isotopic targets. But it is different for the channels with charged particles and more sensitive to the odd-even effect.

References

  1. 1.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Y.T. Oganessian, V.K. Utyonkov, Nucl. Phys. A 944, 62 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    C.E. Dullmann, M. Schadel, A. Yakushev et al., Phys. Rev. Lett. 104, 252701 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J. Khuyagbaatar, A. Yakushev, C.E. Dullmann et al., Phys. Rev. Lett. 112, 172501 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    K. Morita, K. Morimoto, D. Kaji et al., J. Phys. Soc. Jpn. 73, 2593 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    K. Morita, K. Morimoto, D. Kaji et al., J. Phys. Soc. Jpn. 76, 043201 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Z.G. Gan, J.S. Guo, X.L. Wu et al., Nucl. Phys. Rev. 22, 01 (2005)Google Scholar
  8. 8.
    Z.G. Gan, J.S. Guo, X.L. Wu et al., Eur. Phys. J. A. 10, 21 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Z.Y. Zhang, Z.G. Gan, L. Ma et al., Chin. Phys. Lett. 29, 012502 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Z.Q. Feng, G.M. Jin, F. Fu, J.Q. Li, Nucl. Phys. A 771, 50 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Z.Q. Feng, G.M. Jin, J.Q. Li, Phys. Rev. C 80, 057601 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Z.Q. Feng, G.M. Jin, J.Q. Li, W. Scheid, Phys. Rev. C 76, 044606 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Z.Q. Feng, G.M. Jin, J.Q. Li, Nucl. Phys. A 836, 82 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Z.Q. Feng, G.M. Jin, J.Q. Li, W. Scheid, Nucl. Phys. A 816, 33 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    X.J. Bao, Y. Gao, J.Q. Li et al., Phys. Rev. C 92, 034612 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    X.J. Bao, Y. Gao, J.Q. Li et al., Phys. Rev. C 91, 011603 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    N. Wang, J. Tian, W. Scheid, Phys. Rev. C 84, 061601 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    N. Wang, E.G. Zhao, W. Scheid et al., Phys. Rev. C 85, 041601 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    A.S. Zubov, G.G. Adamian, N.V. Antonenko, S.P. Ivanova, W. Scheid, Phys. Rev. C 68, 014616 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 69, 011601 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    G.G. Adamian, N.V. Antonenko, W. Scheid, Eur. Phys. J. A 41, 235 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    G.G. Adamian, N.V. Antonenko, W. Scheid, A.S. Zubov, Phys. Rev. C 78, 044605 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    G.G. Adamian, N.V. Antonenko, A.S. Zubov, Phys. Part. Nucl. 45, 848 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Hong, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 92, 014617 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J. Hong, G.G. Adamian, N.V. Antonenko, Eur. Phys. J. A 52, 305 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Y.J. Liang, M. Zhu, Z.H. Liu et al., Phys. Rev. C 86, 037602 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Z.H. Liu, J.D. Bao, Phys. Rev. C 84, 031602 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Z.H. Liu, J.D. Bao, Phys. Rev. C 87, 034616 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Z.H. Liu, J.D. Bao, Phys. Rev. C 80, 054608 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Z.H. Liu, J.D. Bao, Phys. Rev. C 80, 034607 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    G. Royer, Phys. Rev. C 87, 057601 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    K. Siwek-Wilczynska, T. Cap, M. Kowal et al., Phys. Rev. C 86, 014611 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    A. Sobiczewski, K. Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    J. Hong, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 94, 044606 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    A.J. Sierk, Phys. Rev. C 33, 2039 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    R. Sagaidak, A. Andreyev, Phys. Rev. C 79, 054613 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Sh.A. Kalandarov, G.G. Adamian, N.V. Antonenko et al., Phys. Rev. C 82, 044603 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)ADSCrossRefGoogle Scholar
  39. 39.
    V. Zagrebaev, Y. Aritomo, M. Itkis et al., Phys. Rev. C 65, 014607 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)CrossRefGoogle Scholar
  41. 41.
    G.G. Adamian, N.V. Antonenko, R. Jolos et al., Int. J. Mod. Phys. E 5, 191 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)ADSCrossRefGoogle Scholar
  43. 43.
    J.Q. Li, G. Wolschin, Phys. Rev. C 27, 590 (1983)ADSCrossRefGoogle Scholar
  44. 44.
    G. Wolschin, W. Nörenberg, Z. Phys. A 284, 209 (1978)ADSCrossRefGoogle Scholar
  45. 45.
    J.Q. Li, X. Tang, G. Wolschin, Phys. Lett. B 105, 107 (1981)ADSCrossRefGoogle Scholar
  46. 46.
    W. Nörenberg, Z. Phys. A 274, 241 (1975)ADSCrossRefGoogle Scholar
  47. 47.
    H. Feldmeier, Rep. Prog. Phys. 50, 915 (1987)ADSCrossRefGoogle Scholar
  48. 48.
    G.G. Adamian, N. Antonenko, W. Scheid, Phys. Rev. C 68, 034601 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    P. Grange, J.Q. Li, H. Weidenmuller, Phys. Rev. C 27, 2063 (1983)ADSCrossRefGoogle Scholar
  50. 50.
    Z.Q. Feng, G.M. Jin, F. Fu, J.Q. Li, Chin. Phys. C 31, 366 (2007)Google Scholar
  51. 51.
    P.H. Chen, Z.Q. Feng, J.Q. Li et al., Chin. Phys. C 40, 091002 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    A.S. Zubov, G.G. Adamian, N.V. Antonenko et al., Eur. Phys. J. A 23, 249 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    A. Ignatyuk, K. Istekov, G. Smirenkin, Nucl. Phys. 29, 875 (1979)Google Scholar
  55. 55.
    A. Junghans, M. De Jong, H.G. Clerc et al., Nucl. Phys. A 629, 635 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    J. Jackson, Can. J. Phys. 34, 767 (1956)ADSCrossRefGoogle Scholar
  57. 57.
    D. Vermeulen, H.G. Clerc, C.C. Sahm et al., Z. Phys. A 318, 157 (1984)ADSCrossRefGoogle Scholar
  58. 58.
    P. Möller et al., Phys. Rev. C 79, 064304 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    Z.Q. Feng, Phys. Rev. C 95, 024615 (2017)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Peng-Hui Chen
    • 1
    • 2
    • 3
  • Zhao-Qing Feng
    • 1
  • Fei Niu
    • 1
    • 4
  • Ya-Fei Guo
    • 1
    • 2
  • Hong-Fei Zhang
    • 2
  • Jun-Qing Li
    • 1
  • Gen-Ming Jin
    • 1
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Institute of Particle and Nuclear PhysicsHenan Normal UniversityXinxiangChina

Personalised recommendations