Skip to main content
Log in

Strange hadron production in pp, pPb and PbPb collisions at LHC energies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We present a systematic analysis of transverse momentum \((p_{T})\) spectra of the strange hadrons in different multiplicity events produced in pp collision at \(\sqrt{s} = 7\) TeV, pPb collision at \(\sqrt{s_{NN}} = 5.02\) TeV and PbPb collision at \(\sqrt{s_{NN}} = 2.76\) TeV. Both the single and differential freeze-out scenarios of strange hadrons \( K^0_s\), \(\Lambda\) and \(\Xi^{-}\) are considered while fitting using a Tsallis distribution which is modified to include transverse flow. The \(p_{T}\) distributions of these hadrons in different systems are characterized in terms of the parameters, namely Tsallis temperature (T), power (n) and average transverse flow velocity \((\beta)\). It is found that for all the systems, transverse flow increases as we move from lower to higher multiplicity events. In the case of the differential freeze-out scenario, the degree of thermalization remains similar for events of different multiplicity classes in all the three systems. The Tsallis temperature increases with the mass of the hadrons and also increases with the event multiplicity in pp and pPb system but shows little variation with the multiplicity in PbPb system. In the case of the single freeze-out scenario, the difference between small systems (pp, pPb) and PbPb system becomes more evident. The high-multiplicity PbPb events show higher degree of thermalization as compared to the events of pp and pPb systems. The trend of variation of the temperature in PbPb system with event multiplicity is opposite to what is found in the pp and pPb systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  2. T. Ullrich, B. Wyslouch, J.W. Harris, Nucl. Phys. A 904-905, 1c (2013)

    Google Scholar 

  3. M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005) arXiv:nucl-th/0405013

    Article  ADS  Google Scholar 

  4. T. Hirano, Y. Nara, Phys. Rev. C 69, 034908 (2004) arXiv:nucl-th/0307015

    Article  ADS  Google Scholar 

  5. R.J. Fries, V. Greco, P. Sorensen, Annu. Rev. Nucl. Part. Sci. 58, 177 (2008) arXiv:0807.4939 [nucl-th]

    Article  ADS  Google Scholar 

  6. B. Mller, Phys. Scripta T 158, 014004 (2013) arXiv:1309.7616 [nucl-th]

    Article  ADS  Google Scholar 

  7. W. Li, Mod. Phys. Lett. A 27, 1230018 (2012) arXiv:1206.0148 [nucl-ex]

    Article  ADS  Google Scholar 

  8. CMS Collaboration (V. Khachatryan et al.), JHEP 09, 091 (2010) arXiv:1009.4122 [hep-ex]

    Google Scholar 

  9. P. Ghosh, S. Muhuri, J.K. Nayak, R. Varma, J. Phys. G 41, 035106 (2014)

    Article  ADS  Google Scholar 

  10. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  11. T.S. Biro, G. Purcsel, K. Urmossy, Eur. Phys. J. A 40, 325 (2009) arXiv:0812.2104 [hep-ph]

    Article  ADS  Google Scholar 

  12. P.K. Khandai, P. Sett, P. Shukla, V. Singh, Int. J. Mod. Phys. A 28, 1350066 (2013) arXiv:1304.6224 [hep-ph]

    Article  ADS  Google Scholar 

  13. C.Y. Wong, G. Wilk, Phys. Rev. D 87, 114007 (2013) arXiv:1305.2627 [hep-ph]

    Article  ADS  Google Scholar 

  14. R. Hagedorn, Riv. Nuovo Cimento 6, N.10 (1983)

    Google Scholar 

  15. R. Blankenbecler, S.J. Brodsky, Phys. Rev. D 10, 2973 (1974)

    Article  ADS  Google Scholar 

  16. PHENIX Collaboration (A. Adare et al.), Phys. Rev. D 83, 052004 (2011) arXiv:1005.3674 [hep-ex]

    Article  Google Scholar 

  17. P. Sett, P. Shukla, Adv. High Energy Phys. 2014, 896037 (2014) arXiv:1408.1034 [hep-ph]

    Article  Google Scholar 

  18. Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang, Z. Xu, Phys. Rev. C 79, 051901 (2009) arXiv:0812.1609 [nucl-ex]

    Article  ADS  Google Scholar 

  19. P.K. Khandai, P. Sett, P. Shukla, V. Singh, J. Phys. G 41, 025105 (2014) arXiv:1310.4022 [nucl-th]

    Article  ADS  Google Scholar 

  20. P. Sett, P. Shukla, Int. J. Mod. Phys. E 24, 1550046 (2015) arXiv:1505.05258 [hep-ph]

    Article  ADS  Google Scholar 

  21. H. Zheng, L. Zhu, A. Bonasera, Phys. Rev. D 92, 074009 (2015) arXiv:1506.03156 [nucl-th]

    Article  ADS  Google Scholar 

  22. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013) arXiv:1303.0737 [hep-ex]

    Article  ADS  Google Scholar 

  23. D. Thakur, S. Tripathy, P. Garg, R. Sahoo, J. Cleymans, arXiv:1601.05223 [hep-ph]

  24. H.L. Lao, H.R. Wei, F.H. Liu, R.A. Lacey, Eur. Phys. J. A 52, 203 (2016) arXiv:1601.00045 [nucl-th]

    Article  ADS  Google Scholar 

  25. H.R. Wei, F.H. Liu, R.A. Lacey, Eur. Phys. J. A 52, 102 (2016) arXiv:1601.07045 [hep-ph]

    Article  ADS  Google Scholar 

  26. G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000) arXiv:hep-ph/9908459

    Article  ADS  Google Scholar 

  27. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012) arXiv:1203.4343 [hep-ph]

    Article  ADS  Google Scholar 

  28. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 83, 064903 (2011) arXiv:1102.0753 [nucl-ex]

    Article  Google Scholar 

  29. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 75, 064901 (2007) arXiv:nucl-ex/0607033

    Google Scholar 

  30. R. Blankenbecler, S.J. Brodsky, J.F. Gunion, Phys. Rev. D 12, 3469 (1975)

    Article  ADS  Google Scholar 

  31. S.J. Brodsky, H.J. Pirner, J. Raufeisen, Phys. Lett. B 637, 58 (2006) arXiv:hep-ph/0510315

    Article  ADS  Google Scholar 

  32. J. Cleymans, G. Hamar, P. Levai, S. Wheaton, J. Phys. G 36, 064018 (2009) arXiv:0812.1471 [hep-ph]

    Article  ADS  Google Scholar 

  33. CMS Collaboration (V. Khachatryan), arXiv:1605.06699 [nucl-ex]

  34. CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 724, 213 (2013) arXiv:1305.0609 [nucl-ex]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Shukla.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswat, K., Shukla, P., Kumar, V. et al. Strange hadron production in pp, pPb and PbPb collisions at LHC energies. Eur. Phys. J. A 53, 84 (2017). https://doi.org/10.1140/epja/i2017-12276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12276-7

Navigation