A multi-channel model for an \( \alpha\) plus 6He nucleus cluster

  • K. Amos
  • L. Canton
  • P. R. Fraser
  • S. Karataglidis
  • J. P. Svenne
  • D. van der Knijff
Regular Article - Theoretical Physics

Abstract.

A multi-channel algebraic scattering (MCAS) method has been used to solve coupled sets of Lippmann-Schwinger equations for the \( \alpha + {}^{6}{\rm He}\) cluster system, so finding a model spectrum for 10Be to more than 10MeV excitation. Three states of 6He were included and the resonance character of the two excited states taken into account in finding solutions. A model Hamiltonian has been found that gives very good agreement with the known bound states and with some low-lying resonances of 10Be . More resonance states are predicted than those which have been observed as yet. The method also yields S -matrices which we have used to evaluate low-energy 6He - \( \alpha\) scattering cross sections. Reasonable reproduction of low-energy differential cross sections and of energy variation of cross sections measured at fixed scattering angles have been found. Enlarging the channel space by including two higher energy states of 6He , assuming values for their spin-parities, leads to an enlarged spectrum for 10Be in which the number and distribution of resonances show similarity to the known spectrum.

References

  1. 1.
    L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961)Google Scholar
  2. 2.
    O.A. Yakubovski, Sov. J. Nucl. Phys. 5, 937 (1967)Google Scholar
  3. 3.
    E.O. Alt, P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 167 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    S.B. Dubovichenko, Yu.N. Uzikov, Phys. Part. Nucl. 42, 251 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Rotureau, P. Danielewicz, G. Hagen, F. Nunes, T. Papenbrock, arXiv: 1611:04554 [nucl-th] (2016)Google Scholar
  6. 6.
    P. Navrá, Phys. Scr. 91, 053002 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    S. Karataglidis, P.G. Hansen, B.A. Brown, K. Amos, P.J. Dortmans, Phys. Rev. Lett. 79, 1447 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    S. Karataglidis, P.J. Dortmans, K. Amos, C. Bennhold, Phys. Rev. C 61, 02439 (2000)CrossRefGoogle Scholar
  9. 9.
    K. Amos, P.J. Dortmans, H.V. von Geramb, S. Karataglidis, J. Raynal, Adv. Nucl. Phys. 25, 275 (2000)Google Scholar
  10. 10.
    P.R. Fraser, K. Amos, S. Karataglidis, L. Canton, G. Pisent, J.P. Svenne, Eur. Phys. J. A 35, 69 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    F.G. Perey, B. Buck, Nucl. Phys. 32, 353 (1962)CrossRefGoogle Scholar
  12. 12.
    D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Yu.A. Lashko, G.F. Filippov, V.S. Vasileski, Nucl. Phys. A 958, 78 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    D.R. Tilley et al., Nucl. Phys. A 708, 3 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    P. Fraser, K. Amos, L. Canton, G. Pisent, S. Karataglidis, J.P. Svenne, D. van der Knijff, Phys. Rev. Lett. 101, 0242501 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    L. Canton, P.R. Fraser, J.P. Svenne, K. Amos, S. Karataglidis, D. van der Knijff, Phys. Rev. C 83, 047603 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    P.R. Fraser, L. Canton, R. Fossion, K. Amos, S. Karataglidis, J.P. Svenne, D. van der Knijff, EPJ Web of Conferences 63, 02010 (2013)CrossRefGoogle Scholar
  18. 18.
    P.R. Fraser et al., Phys. Rev. C 94, 034603 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    T. Tamura, Rev. Mod. Phys. 37, 679 (1965)ADSCrossRefGoogle Scholar
  20. 20.
    D.J. Rowe, Nuclear Collective Motion (World Scientific, Singapore, 2010)Google Scholar
  21. 21.
    S. Iwasaki, T. Marumori, F. Sakata, K. Takada, Prog. Theor. Phys. 56, 1140 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    F. Sakata, G. Holzwarth, Prog. Theor. Phys. 61, 1649 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    F. Barranco, R.A. Broglia, G. Gori, E. Vigezzi, P.F. Bortignon, J. Terasaki, Phys. Rev. Lett. 83, 2147 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    L. Canton, G. Pisent, J.P. Svenne, D. van der Knijff, K. Amos, S. Karataglidis, Phys. Rev. Lett. 94, 122503 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    K. Amos, L. Canton, G. Pisent, J.P. Svenne, D. van der Knijff, Nucl. Phys. A 728, 65 (2003) and references thereinADSCrossRefGoogle Scholar
  26. 26.
    V.N. Krasnopol'sky, V.I. Kukulin, Sov. J. Nucl. Phys. 20, 883 (1974)Google Scholar
  27. 27.
    V.I. Kukulin, V.N. Pomerantsev, Ann. Phys. 111, 330 (1978)ADSCrossRefGoogle Scholar
  28. 28.
    S. Saito, Prog. Theor. Phys 41, 705 (1969)ADSCrossRefGoogle Scholar
  29. 29.
    E.W. Schmidt, in Proceedings of the Workshop in Few-Body Problems in Nuclear Physics (Trieste, Italy, 1978), edited by G. Pisent, V. Vanzani, L. Fonda (IAEA, 1978) p. 389Google Scholar
  30. 30.
    L. Canton, G. Pisent, J.P. Svenne, K. Amos, S. Karataglidis, Phys. Rev. Lett. 96, 072502 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    K. Amos, L. Canton, P.R. Fraser, S. Karataglidis, J.P. Svenne, D. van der Knijff, Nucl. Phys. A 912, 7 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Yu.A. Lashko, G.F. Filippov, L. Canton, Ukr. J. Phys. 60, 406 (2015)CrossRefGoogle Scholar
  33. 33.
    G.V. Rogachev et al., J. Phys. Conf. Ser. 569, 012004 (2014)CrossRefGoogle Scholar
  34. 34.
    D. Dell'Aquila et al., Phys. Rev. C 93, 024611 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    L. Canton, G. Pisent, K. Amos, S. Karataglidis, J.P. Svenne, D. van der Knijff, Phys. Rev. C 74, 064605 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    T. Teichmann, E. Wigner, Phys. Rev. 87, 123 (1952)ADSCrossRefGoogle Scholar
  37. 37.
    C. Broggini, L. Canton, G. Fiorentini, F.L. Villante, J. Cosmol. Astropart. Phys. 06, 030 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    K. Amos, Contribution to INPC16, Adelaide, to be published in Proceedings of Science (2017)Google Scholar
  39. 39.
    C.W. de Jager, H. de Vries, C. de Vries, At. Data Nucl. Data Tables 14, 479 (1974)ADSCrossRefGoogle Scholar
  40. 40.
    L.-B. Wang et al., Phys. Rev. Lett. 93, 14250 (2004)Google Scholar
  41. 41.
    D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    D.C. Zheng, B.R. Barrett, J.P. Vary, W.C. Haxton, C.L. Song, Phys. Rev. C 52, 2488 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    A. Etchegoyen, W.D.M. Rae, N.S. Godwin, OXBASH-MSU, the Oxford-Buenos-Aries-Michigan State University shell model code, MSU version by B.A. Brown (1986)Google Scholar
  44. 44.
  45. 45.
    X. Mugeot et al., Phys. Lett. B 718, 441 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    A. Lagoyannis et al., Phys. Lett. B 518, 27 (2001)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • K. Amos
    • 1
    • 2
  • L. Canton
    • 3
  • P. R. Fraser
    • 4
  • S. Karataglidis
    • 1
    • 2
  • J. P. Svenne
    • 5
  • D. van der Knijff
    • 1
  1. 1.School of PhysicsUniversity of MelbourneVictoriaAustralia
  2. 2.Department of PhysicsUniversity of JohannesburgAuckland ParkSouth Africa
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di PadovaPadovaItaly
  4. 4.Department of Physics, Astronomy and Medical Radiation SciencesCurtin UniversityPerthAustralia
  5. 5.Department of Physics and Astronomy, University of Manitoba, and Winnipeg Institute for Theoretical PhysicsWinnipegCanada

Personalised recommendations