Skip to main content
Log in

Jet-dilepton conversion from an anisotropic quark-gluon plasma

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We calculate the yield of lepton pair production from jet-plasma interaction where the plasma is anisotropic in momentum space. We compare both the M and \( p_T\) distributions from such process with the Drell-Yan contribution. It is observed that the invariant mass distribution of the lepton pair from such process dominates over the Drell-Yan one up to 3GeV at RHIC and up to 10GeV at LHC. Moreover, it is found that the contribution from the anisotropic quark gluon plasma (AQGP) increases marginally compared to the isotropic QGP. In case of \(p_{T}\)-distribution we observe an increase by a factor of 3-4 in the entire \(p_{T}\)-range at RHIC for AQGP. However, at LHC the change in the pT-distribution is marginal as compared to the isotropic case. It should be noted that we have used a two stage evolution scenario. First, the system evolves with pre-equilibrium state anisotropy up to \(\tau_{iso}\) (the isotropization time). After that the system evolves hydrodynamically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kapusta, P. Lichard, D. Seibert, Phys. Rev. D 44, 2774 (1991) 47

    Article  ADS  Google Scholar 

  2. R. Baier, H. Nakkagawa, A. Niegawa, K. Redlich, Z. Phys. C 53, 433 (1992)

    Article  ADS  Google Scholar 

  3. P.K. Roy, D. Pal, S. Sarkar, D.K. Srivastava, B. Sinha, Phys. Rev. C 53, 2364 (1996)

    Article  ADS  Google Scholar 

  4. P. Aurenche, F. Gelis, H. Zaraket, R. Kobes, Phys. Rev. D 58, 085003 (1998)

    Article  ADS  Google Scholar 

  5. P. Arnold, G.D. Moore, L.G. Yaffe, JHEP 12, 009 (2001)

    Article  ADS  Google Scholar 

  6. K. Kajantie, J. Kapusta, L. Mclerran, A. Mekjian, Phys. Rev. D 34, 2746 (1986)

    Article  ADS  Google Scholar 

  7. K.J. Eskola, J. Lindfors, Z. Phys. C 46, 141 (1990)

    ADS  Google Scholar 

  8. K. Geiger, J.I. Kapusta, Phys. Rev. Lett. 70, 1920 (1993)

    Article  ADS  Google Scholar 

  9. B. Kampfer, O.P. Pavlenko, Nucl. Phys. A 566, 351 (1994)

    Article  ADS  Google Scholar 

  10. E.V. Shuryak, Phys. Lett. B 78, 150 (1978)

    Article  ADS  Google Scholar 

  11. M. Strickland, Phys. Lett. B 331, 245 (1994)

    Article  ADS  Google Scholar 

  12. D.K. Srivastava, C. Gale, R.J. Fries, Phys. Rev. C 67, 034903 (2003)

    Article  ADS  Google Scholar 

  13. S. Turbide, C. Gale, D.K. Srivastava, R.J. Fries, Phys. Rev. C 74, 014903 (2006)

    Article  ADS  Google Scholar 

  14. Yong-Ping Fu, Yun-De Li, Nucl. Phys. A 865, 76 (2011)

    Article  ADS  Google Scholar 

  15. Yong-Ping Fu, Q. Xi, Phys. Rev. C 92, 024914 (2015)

    Article  ADS  Google Scholar 

  16. S.D. Drell, T.M. Yan, Phys. Rev. Lett. 25, 316 (1970)

    Article  ADS  Google Scholar 

  17. P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen, S.A. Voloshin, Phys. Lett. B 503, 58 (2001)

    Article  ADS  Google Scholar 

  18. R. Baier, A.H. Mueller, D. Schiff, D.T. Son, Phys. Lett. B 502, 51 (2001)

    Article  ADS  Google Scholar 

  19. Z. Xu, C. Greiner, Phys. Rev. C 71, 064901 (2005)

    Article  ADS  Google Scholar 

  20. M. Strickland, J. Phys. G 34, S429 (2007)

    Article  ADS  Google Scholar 

  21. M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008) 79

    Article  ADS  Google Scholar 

  22. S. Mrowczynski, M.H. Thoma, Phys. Rev. D 62, 036011 (2000)

    Article  ADS  Google Scholar 

  23. P. Romatschke, M. Strickland, Phys. Rev. D 68, 036004 (2003)

    Article  ADS  Google Scholar 

  24. P. Romatschke, M. Strickland, Phys. Rev. D 70, 116006 (2004)

    Article  ADS  Google Scholar 

  25. P. Arnold, J. Lenaghan, G.D. Moore, JHEP 08, 002 (2003)

    Article  ADS  Google Scholar 

  26. S. Mrowczynski, A. Rebhan, M. Strickland, Phys. Rev. D 70, 025004 (2004)

    Article  ADS  Google Scholar 

  27. A. Rebhan, P. Romatschke, M. Strickland, Phys. Rev. Lett. 94, 102303 (2005)

    Article  ADS  Google Scholar 

  28. P. Arnold, G.D. Moore, L.G. Yaffe, Phys. Rev. D 72, 054003 (2005)

    Article  ADS  Google Scholar 

  29. B. Schenke, M. Strickland, C. Greiner, M.H. Thoma, Phys. Rev. D 73, 125004 (2006)

    Article  ADS  Google Scholar 

  30. M. Mandal, P. Roy, Adv. High Energy Phys. 2013, 371908 (2013)

    Article  Google Scholar 

  31. M. Martinez, M. Strickland, Phys. Rev. C 78, 034917 (2008)

    Article  ADS  Google Scholar 

  32. L. Bhattacharya, P. Roy, J. Phys. G 37, 105010 (2010)

    Article  ADS  Google Scholar 

  33. L. Bhattacharya, P. Roy, Phys. Rev. C 79, 054910 (2009)

    Article  ADS  Google Scholar 

  34. M. Martinez, M. Strickland, Phys. Rev. Lett. 100, 102301 (2008)

    Article  ADS  Google Scholar 

  35. M. Mandal, L. Bhattacharya, P. Roy, Phys. Rev. C 84, 044910 (2011)

    Article  ADS  Google Scholar 

  36. J.I. Kapusta, L.D. McLerran, D.K. Srivastava, Phys. Lett. B 283, 145 (1992)

    Article  ADS  Google Scholar 

  37. A. Dumitru, D.H. Rischke, T. Schonfeld, L. Winckelmann, H. Stocker, W. Greiner, Phys. Rev. Lett. 70, 2860 (1993)

    Article  ADS  Google Scholar 

  38. R.J. Fries, B. Muller, D.K. Srivastava, Phys. Rev. Lett. 90, 132301 (2003)

    Article  ADS  Google Scholar 

  39. J.F. Owens, Rev. Mod. Phys. 59, 465 (1987)

    Article  ADS  Google Scholar 

  40. R. Rapp, E.V. Shuryak, Phys. Lett. B 473, 13 (2000)

    Article  ADS  Google Scholar 

  41. S. Kretzer, H.L. Lai, F.I. Olness, W.K. Tung, Phys. Rev. D 69, 114005 (2004)

    Article  ADS  Google Scholar 

  42. ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 113, 232504 (2014)

    Article  ADS  Google Scholar 

  43. S. Turbide, C. Gale, S. Jeon, G.D. Moore, Phys. Rev. C 72, 014906 (2005)

    Article  ADS  Google Scholar 

  44. R.C. Hwa, K. Kajantie, Phys. Rev. D 32, 1109 (1985)

    Article  ADS  Google Scholar 

  45. D. Khazreev, M. Nardi, Phys. Lett. B 507, 121 (2001)

    Article  ADS  Google Scholar 

  46. Y.-P. Fu, Q. Xi, Commun. Theor. Phys. 66, 681 (2016)

    Article  ADS  Google Scholar 

  47. W. Florkowski, Phenomenology of Ultra-relativistic Heavy-ion Collisions (World Scientific, Singapore, 2010)

  48. R.S. Bhalerao, arXiv:1404.3294v1 [nucl-th]

  49. P.F. Kolb, U. Heinz, arXiv:nucl-th/0305084

  50. D.K. Srivastava, M.G. Mustafa, B. Muller, Phys. Rev. C 56, 1064 (1997)

    Article  ADS  Google Scholar 

  51. A. Mukherjee, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Mukherjee.

Additional information

Communicated by H. Wittig

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Mandal, M. & Roy, P. Jet-dilepton conversion from an anisotropic quark-gluon plasma. Eur. Phys. J. A 53, 81 (2017). https://doi.org/10.1140/epja/i2017-12265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12265-x

Navigation