Lifetime of rho meson in correlation with magnetic-dimensional reduction

Regular Article - Theoretical Physics

Abstract.

It is naively expected that in a strong magnetic configuration, the Landau quantization ceases the neutral rho meson to decay to the charged pion pair, so the neutral rho meson will be long-lived. To closely access this naive observation, we explicitly compute the charged pion loop in the magnetic field at the one-loop level, to evaluate the magnetic dependence of the lifetime for the neutral rho meson as well as its mass. Due to the dimensional reduction induced by the magnetic field (violation of the Lorentz invariance), the polarization (spin \(s_{z}=0,\pm 1\) modes of the rho meson, as well as the corresponding pole mass and width, are decomposed in a nontrivial manner compared to the vacuum case. To see the significance of the reduction effect, we simply take the lowest Landau level approximation to analyze the spin-dependent rho masses and widths. We find that the “fate” of the rho meson may be more complicated because of the magnetic-dimensional reduction: as the magnetic field increases, the rho width for the spin \(s_{z}=0\) starts to develop, reaches a peak, then vanishes at the critical magnetic field to which the folklore refers. On the other side, the decay rates of the other rhos for \(s_{z} = \pm 1\) monotonically increase as the magnetic field develops. The correlation between the polarization dependence and the Landau level truncation is also addressed.

References

  1. 1.
    D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008) arXiv:0711.0950 [hep-ph]ADSCrossRefGoogle Scholar
  2. 2.
    V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009) arXiv:0907.1396 [nucl-th]ADSCrossRefGoogle Scholar
  3. 3.
    A.K. Harding, D. Lai, Rep. Prog. Phys. 69, 2631 (2006) arXiv:astro-ph/0606674 ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007) arXiv:astro-ph/0612440 ADSCrossRefGoogle Scholar
  5. 5.
    A.Y. Potekhin, Phys. Usp. 53, 1235 (2010) Usp. Fiz. Nauk 180ADSCrossRefGoogle Scholar
  6. 6.
    D. Lai, Space Sci. Rev. 191, 13 (2015) arXiv:1411.7995 [astro-ph.HE]ADSCrossRefGoogle Scholar
  7. 7.
    J.S. Schwinger, Phys. Rev. 82, 664 (1951)ADSCrossRefGoogle Scholar
  8. 8.
    A. Ayala, A. Sanchez, G. Piccinelli, S. Sahu, Phys. Rev. D 71, 023004 (2005) arXiv:hep-ph/0412135 ADSCrossRefGoogle Scholar
  9. 9.
    V.I. Ritus, Ann. Phys. 69, 555 (1972)ADSCrossRefGoogle Scholar
  10. 10.
    A.E. Shabad, Ann. Phys. 90, 166 (1975)ADSCrossRefGoogle Scholar
  11. 11.
    K. Hattori, K. Itakura, Ann. Phys. 330, 23 (2013) arXiv:1209.2663 [hep-ph]ADSCrossRefGoogle Scholar
  12. 12.
    Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  13. 13.
    E.V. Luschevskaya, O.V. Larina, Nucl. Phys. B 884, 1 (2014) arXiv:1203.5699 [hep-lat]ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Andreichikov, B.O. Kerbikov, V.D. Orlovsky, Y.A. Simonov, Phys. Rev. D 87, 094029 (2013) arXiv:1304.2533 [hep-ph]ADSCrossRefGoogle Scholar
  15. 15.
    E.V. Luschevskaya, O.E. Solovjeva, O.A. Kochetkov, O.V. Teryaev, Nucl. Phys. B 898, 627 (2015) arXiv:1411.4284 [hep-lat]ADSCrossRefGoogle Scholar
  16. 16.
    H. Liu, L. Yu, M. Huang, Phys. Rev. D 91, 014017 (2015) arXiv:1408.1318 [hep-ph]ADSCrossRefGoogle Scholar
  17. 17.
    E.V. Luschevskaya, O.A. Kochetkov, O.V. Teryaev, O.E. Solovjeva, JETP Lett. 101, 674 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M.A. Andreichikov, B.O. Kerbikov, E.V. Luschevskaya, Y.A. Simonov, O.E. Solovjeva, arXiv:1610.06887 [hep-ph]

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsNagoya UniversityNagoyaJapan
  2. 2.Institute for Advanced ResearchNagoya UniversityNagoyaJapan

Personalised recommendations