Ultrarelativistic transverse momentum distribution of the Tsallis statistics

Regular Article - Theoretical Physics

Abstract.

The analytical expressions for the ultrarelativistic transverse momentum distributions of the Tsallis and the Tsallis-2 statistics were obtained. We found that the transverse momentum distribution of the Tsallis-factorized statistics, which is now largely used to describe the experimental transverse momentum spectra of hadrons measured in pp collisions at LHC and RHIC energies, in the ultrarelativistic case is not equivalent to the transverse momentum distributions of the Tsallis and the Tsallis-2 statistics. However, we revealed that this distribution exactly coincides with the transverse momentum distribution of the Tsallis-2 statistics in the zeroth term approximation and is transformed to the transverse momentum distribution of the Tsallis statistics in the zeroth term approximation by changing the parameter q to \(1/q_{c}\). We demonstrated analytically on the basis of the ultrarelativistic ideal gas that the Tsallis-factorized statistics is not equivalent to the Tsallis and the Tsallis-2 statistics. In the present paper the Tsallis statistics corresponds to the standard expectation values.

References

  1. 1.
    ALICE Collaboration (K. Aamodt et al.), Eur. Phys. J. C 71, 1655 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    ATLAS Collaboration (G. Aad et al.), New J. Phys. 13, 053033 (2011)CrossRefGoogle Scholar
  3. 3.
    CMS Collaboration (V. Khachatryan et al.), Phys. Rev. Lett. 105, 022002 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    M. Rybczyński, Z. Włodarczyk, Eur. Phys. J. C 74, 2785 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett. B 723, 351 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    M.D. Azmi, J. Cleymans, J. Phys. G: Nucl. Part. Phys. 41, 065001 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J. Cleymans, D. Worku, J. Phys. G: Nucl. Part. Phys. 39, 025006 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    L. Marques, E. Andrade-II, A. Deppman, Phys. Rev. D 87, 114022 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    B.-C. Li, Y.-Z. Wang, F.-H. Liu, X.-J. Wen, Y.-E. Dong, Phys. Rev. D 89, 054014 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    A.S. Parvan, PoS Baldin-ISHEPP-XXII, 077 (2015)Google Scholar
  12. 12.
    A.S. Parvan, O.V. Teryaev, J. Cleymans, arXiv:1607.01956v2 [nucl-th]
  13. 13.
    M. Biyajima, T. Mizoguchi, N. Nakajima, N. Suzuki, G. Wilk, Eur. Phys. J. C 48, 597 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    L. Marques, J. Cleymans, A. Deppman, Phys. Rev. D 91, 054025 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    U. Tirnakli, D.F. Torres, Eur. Phys. J. B 14, 691 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    F. Büyükkiliç, D. Demirhan, A. Güleç, Phys. Lett. A 197, 209 (1995)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Lavagno, Phys. Lett. A 301, 13 (2002)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    W.M. Alberico, A. Lavagno, Eur. Phys. J. A 40, 313 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    J.M. Conroy, H.G. Miller, A.R. Plastino, Phys. Lett. A 374, 4581 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    A.S. Parvan, Eur. Phys. J. A 51, 108 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    A.S. Parvan, Phys. Lett. A 350, 331 (2006)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A.S. Parvan, Phys. Lett. A 360, 26 (2006)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A.S. Parvan, Foundation of equilibrium statistical mechanics based on generalized entropy, in Recent Advances in Thermo and Fluid Dynamics, edited by Mofid Gorji-Bandpy (InTech, Rijeka, 2015) p. 303Google Scholar
  26. 26.
    A.M. Teweldeberhan, A.R. Plastino, H.G. Miller, Phys. Lett. A 343, 71 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    M. Abramowitz, I. Stegun, Handbook of Mathematics Functions, Natl. Bur. Stand. Appl. Math. Ser., Vol. 55 (U.S. Govt. Printing Office, Washington, DC, 1965)Google Scholar
  28. 28.
    D. Prato, Phys. Lett. A 203, 165 (1995)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A.S. Parvan, Eur. Phys. J. A 52, 355 (2016)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Department of Theoretical PhysicsHoria Hulubei National Institute of Physics and Nuclear EngineeringBucharest-MagureleRomania
  3. 3.Institute of Applied PhysicsMoldova Academy of SciencesChisinauRepublic of Moldova

Personalised recommendations