Compton imaging with a highly-segmented, position-sensitive HPGe detector

  • T. Steinbach
  • R. Hirsch
  • P. Reiter
  • B. Birkenbach
  • B. Bruyneel
  • J. Eberth
  • R. Gernhäuser
  • H. Hess
  • L. Lewandowski
  • L. Maier
  • M. Schlarb
  • B. Weiler
  • M. Winkel
Special Article - Tools for Experiment and Theory

Abstract.

A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of \(\gamma\) radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered \(\gamma\)-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole \( 4\pi\) solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between \( 13.8^{\circ}\) and \( 19.1^{\circ}\), depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of \( 4.6^{\circ}\) was determined for the same \(\gamma\)-ray energy.

References

  1. 1.
    P.F. Bloser, R. Andritschke, G. Kanbach, V. Schönfelder, F. Schopper, A. Zoglauer, New Astron. Rev. 46, 611 (2002) (Proceedings of the International Workshop Astronomy with radioactivities IIIADSCrossRefGoogle Scholar
  2. 2.
    G.W. Phillips, Nucl. Instrum. Methods Phys. Res. B 99, 674 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    W. Lee, T. Lee, Nucl. Instrum. Methods Phys. Res. A 624, 118 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    F. Recchia, D. Bazzacco, E. Farnea, R. Venturelli, S. Aydin, G. Suliman, C.A. Ur, Nucl. Instrum. Methods Phys. Res. A 604, 60 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    K. Vetter, Annu. Rev. Nucl. Part. Sci. 57, 363 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    K. Vetter, M. Burks, L. Mihailescu, Nucl. Instrum. Methods Phys. Res. A 525, 322 (2004) (Proceedings of the International Conference on Imaging Techniques in Subatomic Physics, Astrophysics, Medicine, Biology and IndustryADSCrossRefGoogle Scholar
  7. 7.
    T. Niedermayr, K. Vetter, L. Mihailescu, G.J. Schmid, D. Beckedahl, J. Blair, J. Kammeraad, Nucl. Instrum. Methods Phys. Res. A 553, 501 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    H. Tan, User's Manual - Digital Gamma Finder (DGF) PIXIE-16, XIA LLC, 31057 Glenstar Rd., Hayward, CA 94544 USA, 1.40 edition, October 2009Google Scholar
  9. 9.
    H. Tan, Setup Guide for the TU-München Pixie-16 Digital Data Acquisition (DAQ) System for Instrumenting a Compton Camera, XIA LLC, 31057 Glenstar Rd., Hayward, CA 94544 USA, 1.1 edition, February 2011Google Scholar
  10. 10.
    B. Weiler, Development of a Compton camera using highly segmented semiconductor detectors, Diplomarbeit, Technische Universität München, Germany, January 2011Google Scholar
  11. 11.
    J.C. Santiard, W. Beusch, S. Buytaert, C.C. Enz, E. Heihne, P. Jarron, F. Krummenacher, K. Marent, F. Piuz, Gasplex a low-noise analogue signal processor for read out of gaseous detectors, CERN-ECP-94-17 (1994)Google Scholar
  12. 12.
    S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A. Wiens, H. Hess, B. Birkenbach, B. Bruyneel, J. Eberth, D. Lersch, G. Pascovici, P. Reiter, H.-G. Thomas, Nucl. Instrum. Methods Phys. Res. A 618, 223 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    B. Bruyneel, B. Birkenbach, P. Reiter, Eur. Phys. J. A 52, 70 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    M. Schlarb, R. Gernhäuser, S. Klupp, R. Krücken, Eur. Phys. J. A 47, 132 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    M. Schlarb, R. Gernhäuser, S. Klupp, R. Krücken, Eur. Phys. J. A 47, 131 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    G. Cavalleri, E. Gatti, G. Fabri, V. Svelto, Nucl. Instrum. Methods 92, 137 (1971)ADSCrossRefGoogle Scholar
  18. 18.
    B. Bruyneel, P. Reiter, A. Wiens, J. Eberth, H. Hess, G. Pascovici, N. Warr, D. Weisshaar, Nucl. Instrum. Methods Phys. Res. A 599, 196 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    P.-A. Söderström, F. Recchia, J. Nyberg et al., Nucl. Instrum. Methods Phys. Res. A 638, 96 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    S.J. Wilderman, W.L. Rogers, G.F. Knoll, J.C. Engdahl, IEEE Trans. Nucl. Sci. 45, 957 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    A. Van Oosterom, J. Strackee, IEEE Trans. Biomed. Eng. 30, 125 (1983)CrossRefGoogle Scholar
  22. 22.
    R. Hirsch, Master's Thesis, Universität zu Köln, Germany, in preparation (2017)Google Scholar
  23. 23.
    S. Moon, B.Q. Arns, A.J. Boston, H.C. Boston, J.R. Cresswell, T. Davinson, A. Gadea, L.J. Harkness, D.S. Judson, I. Lazarus, P.J. Nolan, R.D. Page, A.H. Prieto, J. Simpson, J. Instrum. 6, C12048 (2011)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • T. Steinbach
    • 1
  • R. Hirsch
    • 1
  • P. Reiter
    • 1
  • B. Birkenbach
    • 1
  • B. Bruyneel
    • 1
  • J. Eberth
    • 1
  • R. Gernhäuser
    • 2
  • H. Hess
    • 1
  • L. Lewandowski
    • 1
  • L. Maier
    • 2
  • M. Schlarb
    • 2
  • B. Weiler
    • 2
  • M. Winkel
    • 2
  1. 1.Institut für KernphysikUniversität zu KölnKölnGermany
  2. 2.Physik DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations