Skip to main content
Log in

Asymmetric nuclear matter and neutron star properties within the extended Brueckner theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Microscopically, the equation of state (EOS) and other properties of asymmetric nuclear matter at zero temperature have been investigated extensively by adopting the non-relativistic Brueckner-Hartree-Fock (BHF) and the extended BHF approaches by using the self-consistent Green’s function approach or by including a phenomenological three-body force. Once three-body forces are introduced, the phenomenological saturation point is reproduced and the theory is applied to the study of neutron star properties. We can calculate the total mass and radius for neutron stars using various equations of state at high densities in \( \beta\)-equilibrium without hyperons. A comparison with other microscopic predictions based on non-relativistic and density-dependent relativistic mean-field calculations has been done. It is found that relativistic EOS yields however larger mass and radius for neutron star than predictions based on non-relativistic approaches. Also the three-body force plays a crucial role to deduce the theoretical value of the maximum mass of neutron stars in agreement with recent measurements of the neutron star mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Weber, N.K. Glendenning, M.K. Weigel, Astrophys. J. 373, 579 (1991)

    Article  ADS  Google Scholar 

  2. C.P. Lorenz, D.G. Ravenhall, C.J. Pethick, Phys. Rev. Lett. 70, 379 (1993)

    Article  ADS  Google Scholar 

  3. C.J. Pethick, D.G. Ravenhall, C.P. Lorenz, Nucl. Phys. A 584, 675 (1995)

    Article  ADS  Google Scholar 

  4. Bao-An Li, Lie-Wen Chen, Che Ming Ko, Phys. Rep. 464, 113 (2008)

    Article  ADS  Google Scholar 

  5. G. Bao, L. Engvik, M. Hjorth-Jensen, E. Osnes, E. Ostgaard, Nucl. Phys. A 575, 707 (1994)

    Article  ADS  Google Scholar 

  6. A.W. Steiner, M. Hempel, T. Fischer, Astrophys. J. 774, 17 (2013)

    Article  ADS  Google Scholar 

  7. T. Fischer, M. Hempel, I. Sagert, Y. Suwa, J. Schaffner-Bielich, Eur. Phys. J. A 50, 46 (2014)

    Article  ADS  Google Scholar 

  8. S.E. Thorsett, Z. Arzoumanian, M.M. McKinnon, J.H. Taylor, Astrophys. J. 405, L29 (1993)

    Article  ADS  Google Scholar 

  9. J. Oppenheimer, G. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  10. R.C. Tolman, Proc. Natl. Acad. Sci. U.S.A. 20, 3 (1934)

    Google Scholar 

  11. E. Witten, Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  12. C. Alcock, E. Farhi, A.V. Olinto, Astrophys. J. 310, 261 (1986)

    Article  ADS  Google Scholar 

  13. G.E. Brown, C.H. Lee, M. Rho, V. Thorsson, Nucl. Phys. A 567, 937 (1994)

    Article  ADS  Google Scholar 

  14. A.B. Migdal, E.E. Saperstein, M.A. Troitsky, D.N. Voskresensky, Phys. Rep. 192, 179 (1990)

    Article  ADS  Google Scholar 

  15. M. Baldo, G.F. Burgio, H.-J. Schulze, Phys. Rev. C 58, 3688 (1998)

    Article  ADS  Google Scholar 

  16. M. Baldo, Nuclear Methods and the Nuclear Equation of State, International Review of Nuclear Physics (World Scientific, 1999)

  17. M. Baldo, G.F. Burgio, H.-J. Schulze, Phys. Rev. C 61, 55801 (2000)

    Article  ADS  Google Scholar 

  18. R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989)

    Google Scholar 

  19. L. Engvik, M. Hjorth-Jensen, E. Osnes, G. Bao, E. Ostgaard, Phys. Rev. Lett. 73, 2650 (1994)

    Article  ADS  Google Scholar 

  20. E.N.E. van Dalen, C. Fuchs, A. Faessler, Eur. Phys. J. A 31, 29 (2007)

    Article  ADS  Google Scholar 

  21. Bao Yuan Sun, Wen Hui Long, Jie Meng, U. Lombardo, Phys. Rev. C 78, 065805 (2008)

    Article  ADS  Google Scholar 

  22. P. Gögelein, E.N.E. van Dalen, Kh. Gad, Kh.S.A. Hassaneen, H. Müther, Phys. Rev. C 79, 024308 (2009)

    Article  ADS  Google Scholar 

  23. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  24. J. Antoniadis et al., Science 340, 6131 (2013)

    Article  ADS  Google Scholar 

  25. E. Fonseca, arXiv:1603.00545 (2016)

  26. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  27. S.F. Ban, J. Li, S.Q. Zhang, H.Y. Jia, J.P. Sang, J. Meng, Phys. Rev. C 69, 045805 (2004)

    Article  ADS  Google Scholar 

  28. S. Lawley, W. Bentz, A.W. Thomas, Nucl. Phys. Proc. Suppl. 141, 29 (2005)

    Article  ADS  Google Scholar 

  29. J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, M.R. Strayer, Phys. Rev. C 68, 034324 (2003)

    Article  ADS  Google Scholar 

  30. M. Dutra, O. Lourenço, J.S. Sá Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012)

    Article  ADS  Google Scholar 

  31. P.D. Stevenson, P.M. Goddard, J.R. Stone, M. Dutra, AIP Conf. Proc. 1529, 262 (2013)

    Article  ADS  Google Scholar 

  32. R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996)

    Article  ADS  Google Scholar 

  33. R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  34. T. Frick, Kh. Gad, H. Müther, P. Czerski, Phys. Rev. C 65, 034321 (2002)

    Article  ADS  Google Scholar 

  35. T. Frick, Kh.S.A. Hassaneen, D. Rohe, H. Müther, Phys. Rev. C 70, 024309 (2004)

    Article  ADS  Google Scholar 

  36. Kh.S.A. Hassaneen, H. Müther, Phys. Rev. C 70, 054308 (2004)

    Article  ADS  Google Scholar 

  37. M. Baldo, A. Shaban, Phys. Lett. B 661, 373 (2008)

    Article  ADS  Google Scholar 

  38. Kh. Gad, Kh.S.A. Hassaneen, Nucl. Phys. A 793, 67 (2007)

    Article  ADS  Google Scholar 

  39. Kh.S.A. Hassaneen, Kh. Gad, J. Phys. Soc. Jpn. 77, 084201 (2008)

    Article  ADS  Google Scholar 

  40. H. Mansour, Kh. Gad, Kh.S.A. Hassaneen, Prog. Theor. Phys. 123, 687 (2010)

    Article  ADS  Google Scholar 

  41. M. Baldo, I. Bombaci, G.F. Burgio, Astron. Astrophys. 328, 274 (1997)

    ADS  Google Scholar 

  42. E. Khan, J. Margueron, arXiv:1304.4721v1 (2013)

  43. J.R. Stone, N.J. Stone, S.A. Moszkowski, Phys. Rev. C 89, 044316 (2014)

    Article  ADS  Google Scholar 

  44. H. Müther, A. Polls, Prog. Part. Nucl. Phys. 45, 243 (2000)

    Article  ADS  Google Scholar 

  45. J.P. Jeukenne, A. Lejeunne, C. Mahaux, Phys. Rep. 25, 83 (1976)

    Article  ADS  Google Scholar 

  46. Kh.S.A. Hassaneen, H.M. Abo-Elsebaa, E.A. Sultan, H.M.M. Mansour, Ann. Phys. 326, 566 (2011)

    Article  ADS  Google Scholar 

  47. H.M.M. Mansour, Kh.S.A. Hassaneen, Phys. At. Nucl. 77, 290 (2014)

    Article  Google Scholar 

  48. E. Schiller, H. Müther, P. Czerski, Phys. Rev. C 59, 2934 (1999) 60

    Article  ADS  Google Scholar 

  49. P. Grangé, J. Cugnon, A. Lejeune, Nucl. Phys. A 473, 365 (1987)

    Article  ADS  Google Scholar 

  50. D.S. Koltun, Phys. Rev. C 9, 484 (1974)

    Article  ADS  Google Scholar 

  51. I. Bombaci, U. Lombardo, Phys. Rev. C 44, 1892 (1991)

    Article  ADS  Google Scholar 

  52. P.G. Krastev, F. Sammarruca, Phys. Rev. C 74, 025808 (2006)

    Article  ADS  Google Scholar 

  53. P.E. Haustein, At. Data Nucl. Data Tables 39, 185 (1988)

    Article  ADS  Google Scholar 

  54. A.W. Steiner, J.M. Lattimer, E.F. Brown, Eur. Phys. J. A 52, 18 (2016)

    Article  ADS  Google Scholar 

  55. A. Rios, A. Polls, I. Vidaña, Phys. Rev. C 79, 025802 (2009)

    Article  ADS  Google Scholar 

  56. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  57. J. Carlson, V.R. Pandharipande, R.B. Wiringa, Nucl. Phys. A 401, 59 (1983)

    Article  ADS  Google Scholar 

  58. Private communication with Professor M. Baldo

  59. P. Bonche, D. Vautherin, Nucl Phys. A 372, 496 (1981)

    Article  ADS  Google Scholar 

  60. E.N.E. van Dalen, P. Gögelein, H. Müther, Phys. Rev. C 80, 044312 (2009)

    Article  ADS  Google Scholar 

  61. J.M. Lattimer, B.F. Schutz, Astrophys. J. 629, 979 (2005)

    Article  ADS  Google Scholar 

  62. D. Blaschke, D. E. Alvarez-Castillo, T. Klähn, arXiv:1604.08575 [nucl-th]

  63. J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013)

    Article  ADS  Google Scholar 

  64. J.M. Lattimer, C.J. Pethick, M. Prakash, P. Haensel, Phys. Rev. Lett. 66, 2701 (1991)

    Article  ADS  Google Scholar 

  65. P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002)

    Article  ADS  Google Scholar 

  66. M. Prakash, T.L. Ainsworth, J.M. Lattimer, Phys. Rev. Lett. 61, 2518 (1988)

    Article  ADS  Google Scholar 

  67. Xuejun Wu, H. Müther, M. Soffel, H. Herold, H. Ruder, Astron. Astrophys. 246, 411 (1991)

    ADS  Google Scholar 

  68. F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 025804 (2001)

    Article  ADS  Google Scholar 

  69. Z.H. Li, H.J. Schulze, Phys. Rev. C 78, 028801 (2008)

    Article  ADS  Google Scholar 

  70. Ch.C. Moustakidis, Phys. Rev. C 91, 035804 (2015)

    Article  ADS  Google Scholar 

  71. S. Gandolfi, A. Gezerlis, J. Carlson, Annu. Rev. Nucl. Part. Sci 65, 303 (2015)

    Article  ADS  Google Scholar 

  72. G. Baym, C. Pethick, D. Sutherland, Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  73. J.W. Negele, D. Vautherin, Nucl. Phys. A 207, 298 (1973)

    Article  ADS  Google Scholar 

  74. T. Güver, F. Özel, Astrophys. J. 765, L1 (2013)

    Article  ADS  Google Scholar 

  75. B.K. Sharma, M. Centelles, X. Vinas, M. Baldo, G.F. Burgio, Astron. Astrophys. 584, A103 (2015)

    Article  ADS  Google Scholar 

  76. M. Dutra, O. Lourenço, D.P. Menezes, Phys. Rev. C 93, 025806 (2016) 94

    Article  ADS  Google Scholar 

  77. M. Dutra, O. Lourenço, S.S. Avancini, B.V. Carlson, A. Delfino, D.P. Menezes, C. Providencia, S. Typel, J.R. Stone, Phys. Rev. C 90, 055203 (2014)

    Article  ADS  Google Scholar 

  78. L. Engvik, E. Osnes, M. Hjorth-Jensen, G. Bao, E. Ostgaard, Astrophys. J. 469, 794 (1996)

    Article  ADS  Google Scholar 

  79. W. Zuo, I. Bombaci, U. Lombardo, Eur. Phys. J. A 50, 12 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled S. A. Hassaneen.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassaneen, K.S.A. Asymmetric nuclear matter and neutron star properties within the extended Brueckner theory. Eur. Phys. J. A 53, 9 (2017). https://doi.org/10.1140/epja/i2017-12196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12196-6

Navigation