Skip to main content
Log in

Systematization of \(\alpha\)-decaying nuclei based on shell structures: The case of even-odd nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Previously, we provided a novel systematization of \(\alpha\)-decaying even-even nuclei starting with the classically adopted mechanism (Yarman et al., Eur. Phys. J. A 52, 140 (2016)). The decay half-life of an \(\alpha\)-decaying nucleus was framed so that i) the \(\alpha\)-particle is taken at the outset to be born inside the parent nucleus with a given probability, ii) where it then keeps on bouncing off of the barrier of the parent nucleus till iii) it finally tunnels through the barrier. Knowing beforehand the measured decay half-life, we have taken into consideration, as a parameter, the probability of the \(\alpha\)-particle being first born within the parent before it is emitted. We thence developed a scaffold based on shell properties of families composed of alike even-even nuclei. Nevertheless, our model allows us to incorporate any \(\alpha\)-decaying nuclei, and along this line, we present a follow-up systematization of even-odd nuclei, with cases of odd-even and odd-odd \(\alpha\)-decaying nuclei pending to be considered in a separate contribution. Notwithstanding, we make an effort herein to expand our approach to investigate the effect of “pairing” (e.g., when a number of nucleons in the given nucleus becomes an even number, instead of the initial odd number, due to the addition of at least one neutron). Our results show that “pairing”, as expected, definitely increases the stability of the given nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yarman et al., Eur. Phys. J. A 52, 140 (2016)

    Article  ADS  Google Scholar 

  2. H. Geiger, J.M. Nuttall, Philos. Mag. 22, 130 (1911)

    Article  Google Scholar 

  3. H. Geiger, J.M. Nuttall, Philos. Mag. 23, 439 (1912)

    Article  Google Scholar 

  4. C. Qia, A.N. Andreyev, M. Huyse, R.J. Liotta, P. Van Duppen, R. Wyss, Phys. Lett. B 734, 203 (2014)

    Article  ADS  Google Scholar 

  5. R.G. Lovasa, R.J. Liotta, A. Insolia, K. Vargaa, D.S. Deliond, Phys. Rep. 294, 265 (1998)

    Article  ADS  Google Scholar 

  6. Y. Ren, Z. Ren, Phys. Rev. C 85, 044608 (2012)

    Article  ADS  Google Scholar 

  7. A.N. Andreyev, M. Huyse, P. van Duppen et al., Phys. Rev. Lett. 110, 242502 (2013)

    Article  ADS  Google Scholar 

  8. Chong Qi, Rev. Phys. 1, 77 (2016)

    Article  Google Scholar 

  9. D.S. Delion, A. Dumitrescu, V.V. Baran, Phys. Rev. C 93, 044321 (2016)

    Article  ADS  Google Scholar 

  10. G. Gamow, Z. Phys. 51, 204 (1928)

    Article  ADS  Google Scholar 

  11. Shell Model of Nucleus, http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/shell.html

  12. T. Yarman, Opt. Spectrosc. 97, 683 (2004)

    Article  ADS  Google Scholar 

  13. T. Yarman, Opt. Spectrosc. 97, 691 (2004)

    Article  ADS  Google Scholar 

  14. T. Yarman, V.B. Rozanov, N. Zaim, F. Ozaydin, Balk. Phys. Lett. 15, 71 (2007)

    Google Scholar 

  15. T. Yarman, F. Özaydin, Sci. Res. Essays 6, 4478 (2011)

    Article  Google Scholar 

  16. T. Yarman, Ann. Fond. Louis de Broglie 29, 459 (2004)

    MathSciNet  Google Scholar 

  17. T. Yarman, Found. Phys. Lett. 19, 675 (2006)

    Article  MathSciNet  Google Scholar 

  18. T. Yarman, The Quantum Mechanical Framework Behind the End Results of the General Theory of Relativity: Matter Is Built on a Matter Architecture (Nova Publishers, New York, 2010)

  19. A.I. Budaca, I. Silişteanu, Phys. Rev. C 88, 044618 (2013)

    Article  ADS  Google Scholar 

  20. Y. Qian, Z. Ren, Phys. Lett. B 738, 87 (2014)

    Article  ADS  Google Scholar 

  21. H. Koura, J. Nucl. Sci. Technol. 49, 816 (2012)

    Article  Google Scholar 

  22. Z. Di-Da, C. Bao-Qiu, M. Zhong-Yu, Chin. Phys. C 34, 334 (2010)

    Article  ADS  Google Scholar 

  23. Xiao-Dong Sun, Ping Guo, Xiao-Hua Li, Phys. Rev. C 93, 034316 (2016) arXiv:1511.05652v1 [nuc1-th] (2015)

    Article  ADS  Google Scholar 

  24. R.D. Evans, The Atomic Nucleus (McGraw-Hill, 1955)

  25. D. Ni, Z. Ren, T. Dong, Y. Qian, Phys. Rev. C 88, 024310 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kholmetskii.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarman, T., Zaim, N., Yarman, O. et al. Systematization of \(\alpha\)-decaying nuclei based on shell structures: The case of even-odd nuclei. Eur. Phys. J. A 53, 4 (2017). https://doi.org/10.1140/epja/i2017-12191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12191-y

Navigation