Skip to main content
Log in

Ternary fission of 260No in equatorial configuration

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Spontaneous ternary fission is one of the observed decay modes of heavy nuclei. We systematically investigate the equatorial ternary fission of the 260No isotope. In the framework of the three-cluster model, the three-body interaction potential is calculated in terms of the folded M3Y-Reid nucleon-nucleon force and the Coulomb one. The relative orientations of the deformed heavy nuclei participating in the fragmentation process are taken into account. All possible emitted light particles with even mass numbers \(A = 4\)-52 are considered. The favored fragmentation channels are estimated as the ones characterized with peaks in the Q-value and local minima in the fragmentation potential. In the absence of nuclear deformations, the closed shell effects are found to play the key role in determining the channels of minimum fragmentation potential and the involved two heavier fragments tend to be of comparable sizes. Inclusion of nuclear deformations manifest the participation of highly deformed prolate nuclei, with large mass asymmetry, as heavy fragment partners in the estimated favored fragmentation channels. The results indicate that the equatorial ternary fission of 260No is most favored with the light emitted nuclei 4,6,8 2He and 10 4Be through the fragmentation channels 155 60Nd + 4 2He + 101 0Zr, 153 60Nd + 6 2He + 101 40Zr, 152 60Nd + 8 2He + 100 40Zr, and 152 0Nd + 10 4Be + 98 38Sr, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.W. Alvarez, as reported by G. Farewell, E. Segrè, C. Wiegand, Phys. Rev. 71, 327 (1947)

    Article  ADS  Google Scholar 

  2. L.L. Green, D.L. Livesey, Nature 159, 332 (1947)

    Article  ADS  Google Scholar 

  3. T. San-Tsiang et al., C. R. Acad. Sci. (Paris) 223, 986 (1946)

    Google Scholar 

  4. T. San-Tsiang et al., Phys. Rev. 71, 382 (1947)

    Article  ADS  Google Scholar 

  5. C. Wagemans, Ternary Fission in The Nuclear Fission Process, edited by Cyriel Wagemans (CRC Press, Boca Raton, 1991) Chapt. 12

  6. S. Vermote, C. Wagemans, O. Serot, J. Heyse, J. Van Gils, T. Soldner, P. Geltenbort, Nucl. Phys. A 806, 1 (2008)

    Article  ADS  Google Scholar 

  7. A.V. Ramayya et al., Phys. Rev. Lett. 81, 947 (1998)

    Article  ADS  Google Scholar 

  8. P. Singer, Yu.N. Kopatch, M. Mutterer, M. Klemens, A. Hotzel, D. Schwalm, P. Thirolf, M. Hesse, Proceedings of the 3rd International Conference on Dynamical Aspects of Nuclear Fission, edited by J. Kliman, B. Pustylink (Casta Papiernica, Slovakia, 1996) p. 262

  9. A.V. Ramayya, J.H. Hamilton, J.K. Hwang, Rom. Rep. Phys. 59, 595 (2007)

    Google Scholar 

  10. A.V. Ramayya et al., Phys. Rev. C 57, 2370 (1998)

    Article  ADS  Google Scholar 

  11. Yu.N. Kopatch, M. Mutterer, D. Schwalm D, P. Thirolf, F. Gonnenwein, Phys. Rev. C 65, 044614 (2002)

    Article  ADS  Google Scholar 

  12. J.H. Hamilton et al., Prog. Part. Nucl. Phys. 38, 273 (1997)

    Article  ADS  Google Scholar 

  13. A.V. Daniel et al., Phys. Rev. C 69, 041305 (2004)

    Article  ADS  Google Scholar 

  14. K.R. Vijayaraghavan, M. Balasubramaniam, W. von Oertzen, Phys. Rev. C 91, 044616 (2015)

    Article  ADS  Google Scholar 

  15. V.I. Zagrebaev, A.V. Karpov, Walter Greiner, Phys. Rev. C 81, 044608 (2010)

    Article  ADS  Google Scholar 

  16. Y.V. Pyatkov et al., Rom. Rep. Phys. 59, 569 (2007)

    Google Scholar 

  17. Y.V. Pyatkov et al., Eur. Phys. J. A 45, 29 (2010)

    Article  ADS  Google Scholar 

  18. Y.V. Pyatkov et al., Eur. Phys. J. A 48, 94 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.K. Nasirov, W. von Oertzen, I. Muminov, R.B. Tashkhodjaev, Phys. Scr. 89, 054022 (2014)

    Article  ADS  Google Scholar 

  20. W. von Oertzen, A.K. Nasirov, R.B. Tashkhodjaev, Phys. Lett. B 746, 223 (2015)

    Article  ADS  Google Scholar 

  21. K. Manimaran, M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011)

    Article  ADS  Google Scholar 

  22. K.P. Santhosh, Sreejith Krishnan, B. Priyanka, Int. J. Mod. Phys. E 23, 1450071 (2014)

    Article  ADS  Google Scholar 

  23. K.R. Vijayaraghavan, M. Balasubramaniam, W. von Oertzen, Phys. Rev. C 90, 024601 (2014)

    Article  ADS  Google Scholar 

  24. K. Manimaran, M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009)

    Article  ADS  Google Scholar 

  25. K. Manimaran, M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010)

    Article  ADS  Google Scholar 

  26. D.N. Poenaru, W. Greiner, J.H. Hamilton, A.V. Ramayya, E. Hourany, R.A. Gherghescu, Phys. Rev. C 59, 3457 (1999)

    Article  ADS  Google Scholar 

  27. D.N. Poenaru, B. Dobrescu, W. Greiner, J.H. Hamilton, A.V. Ramayya, J. Phys. G: Nucl. Part. Phys. 26, L97 (2000)

    Article  ADS  Google Scholar 

  28. W. von Oertzen, Y.V. Pyatkov, D. Kamanin, Acta Phys. Pol. 44, 447 (2013)

    Article  ADS  Google Scholar 

  29. K.P. Santhosh, Sreejith Krishnan, B. Priyanka, Eur. Phys. J. A 50, 66 (2010)

    Article  ADS  Google Scholar 

  30. K. Manimaran, M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010)

    Article  ADS  Google Scholar 

  31. G. Audi, F.G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot, M. MacCormick, Chin. Phys. C 36, 1157 (2012)

    Article  Google Scholar 

  32. M. Ismail, W.M. Seif, A.S. Hashem, M.M. Botros, I.A.M. Abdul-Magead, Ann. Phys. 372, 375 (2016)

    Article  ADS  Google Scholar 

  33. M. Ismail, W.M. Seif, A.Y. Ellithi, A.S. Hashem, Can. J. Phys. 91, 401 (2013)

    Article  ADS  Google Scholar 

  34. M. Wang, G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  35. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    Article  ADS  Google Scholar 

  36. G. Bertsch, J. Borysowicz, H. McManus, W.G. Love, Nucl. Phys. A 284, 399 (1977)

    Article  ADS  Google Scholar 

  37. M. Ismail, A.Y. Ellithi, H. El Gebaly, M.M. Botros, A. Adel, Int. J. Mod. Phys. E 19, 371 (2010)

    Article  ADS  Google Scholar 

  38. M. Ismail, W.M. Seif, H. Abou-Shady, A. Bakry, Phys. At. Nucl. 69, 1463 (2006)

    Article  Google Scholar 

  39. W.M. Seif, J. Phys. G: Nucl. Part. Phys. 40, 105102 (2013)

    Article  ADS  Google Scholar 

  40. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)

    Article  ADS  Google Scholar 

  41. M. Ismail, W.M. Seif, Phys. Rev. C 81, 034607 (2010)

    Article  ADS  Google Scholar 

  42. M. Ismail, W.M. Seif, A. Abdurrahman, Phys. Rev. C 94, 024316 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Seif.

Additional information

Communicated by A. Ramos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, M., Seif, W.M. & Hashem, A.S. Ternary fission of 260No in equatorial configuration. Eur. Phys. J. A 52, 317 (2016). https://doi.org/10.1140/epja/i2016-16317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16317-5

Navigation