Skip to main content
Log in

Nuclear level density of even-even nuclei with temperature-dependent pairing energy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The influence of using a temperature-dependent pairing term on the back-shifted Fermi gas (BSFG) model of nuclear level density of some even-even nuclei has been investigated. We have chosen an approach to determine the adjustable parameters from theoretical calculations, directly. The exact Ginzburg-Landau (EGL) theory was used to determine the temperature-dependent pairing energy as back-shifted parameter of the BSFG model. The level density parameter of the BSFG model has been determined through the Thomas-Fermi approximation. The level densities of 96Mo, 106,112Cd, 106,108Pd, 164Dy, 232Th, 238U and heat capacities of 96Mo and 164Dy nuclei were calculated. Good agreement between theory and experiment was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 1 (World Scientific, 1998)

  2. H.T. Nyhus et al., Phys. Rev. C 85, 014323 (2012)

    Article  ADS  Google Scholar 

  3. M. Guttormsen et al., Phys. Rev. C 88, 024307 (2013)

    Article  ADS  Google Scholar 

  4. A.S. Zubov, G.G. Adamian, N.V. Antonenko, Phys. Part. Nucl. 40, 847 (2009)

    Article  Google Scholar 

  5. T. Von Egidy, H.H. Schmidt, A.N. Behkami, Nucl. Phys. A 481, 189 (1988)

    Article  ADS  Google Scholar 

  6. Till von Egidy, Dorel Bucurescu, Phys. Rev. C 72, 044311 (2005)

    Article  Google Scholar 

  7. Till von Egidy, Dorel Bucurescu, Phys. Rev. C 73, 049901 (2006)

    Article  ADS  Google Scholar 

  8. A.J. Koning, S. Hilaire, S. Goriely, Nucl. Phys. A 810, 13 (2008)

    Article  ADS  Google Scholar 

  9. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  10. S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 1 (1997)

    Article  ADS  Google Scholar 

  11. Y. Alhassid, G.F. Bertsch, L. Fang, Phys. Rev. C 68, 044322 (2003)

    Article  ADS  Google Scholar 

  12. L.G. Moretto, Nucl. Phys. A 185, 145 (1972)

    Article  ADS  Google Scholar 

  13. R. Rossignoli, N. Canosa, P. Ring, Phys. Rev. Lett. 80, 1853 (1998)

    Article  ADS  Google Scholar 

  14. K. Kaneko, M. Hasegawa, Phys. Rev. C 72, 024307 (2005)

    Article  ADS  Google Scholar 

  15. S. Shlomo, Nucl. Phys. A 539, 17 (1992)

    Article  ADS  Google Scholar 

  16. A. Bhagwat et al., Phys. Rev. C 81, 044321 (2010)

    Article  ADS  Google Scholar 

  17. M.R. Pahlavani, S.A. Alavi, E. Farhadi, Mod. Phys. Lett. A 29, 1450017 (2014)

    Article  ADS  Google Scholar 

  18. S.S. Hsiao, J. Markram, H.G. Miller, Y. Tzeng, Phys. Lett. B 315, 12 (1993)

    Article  ADS  Google Scholar 

  19. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  20. P. Mohammadi, V. Dehghani, A.A. Mehmandoost-Khajeh-Dad, Phys. Rev. C 90, 054304 (2014)

    Article  ADS  Google Scholar 

  21. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1966)

  22. L.E. Reichl, A Modern Course in Statistical Physics, 3rd edition (Wiley-VCH, 2009)

  23. M.K.G. Kruse et al., Eur. Phys. J. A 25, 339 (2005)

    Article  ADS  Google Scholar 

  24. K. Kaneko et al., Phys. Rev. C 74, 024325 (2006)

    Article  ADS  Google Scholar 

  25. Z. Kargar, V. Dehghani, J. Phys. G 40, 045108 (2013)

    Article  ADS  Google Scholar 

  26. W. Ye, N. Wang, Phys. Rev. C 87, 014610 (2013)

    Article  ADS  Google Scholar 

  27. D. Naderi, M.R. Pahlavani, S.A. Alavi, Phys. Rev. C 87, 054618 (2013)

    Article  ADS  Google Scholar 

  28. M.R. Pahlavani S.A. Alavi, Mod. Phys. Lett. A 29, 1450214 (2014)

    Article  ADS  Google Scholar 

  29. Chankova et al., Phys. Rev. C 73, 034311 (2006)

    Article  ADS  Google Scholar 

  30. A.J. Cole, Statistical Models for Nuclear Decay (IOP Publishing Ltd, 2000).

  31. J.H.C. Pauli, V.V. Pashkevich, V.M. Strutinsky, Nucl. Phys. A 135, 432 (1969)

    Article  ADS  Google Scholar 

  32. S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, Comput. Phys. Commun. 46, 379 (1987)

    Article  ADS  Google Scholar 

  33. Z. Patyk, A. Sobiczewski, Nucl. Phys. A 533, 132 (1991)

    Article  ADS  Google Scholar 

  34. V.I. Zagrebaev, NRV: Low Energy Nuclear Knowledge Base, http://nrv.jinr.ru/nrv

  35. P.G. De Gennes, Superconductivity of Metals and Alloys (Westview, Boulder, CO, 1999)

  36. T. Ericson, Adv. Phys. 36, 425 (1960)

    Article  ADS  Google Scholar 

  37. K. Kaneko, M. Hasegawa, Nucl. Phys. A 740, 95 (2004)

    Article  ADS  Google Scholar 

  38. I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  39. H.T. Nyhus et al., Phys. Rev. C 85, 014323 (2012)

    Article  ADS  Google Scholar 

  40. A.C. Larsen et al., Phys. Rev. C 87, 014319 (2013)

    Article  ADS  Google Scholar 

  41. H. Utsunomiya et al., Phys. Rev. C 88, 015805 (2013)

    Article  ADS  Google Scholar 

  42. T.K. Eriksen et al., Phys. Rev. C 90, 044311 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Alavi.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, V., Alavi, S.A. Nuclear level density of even-even nuclei with temperature-dependent pairing energy. Eur. Phys. J. A 52, 306 (2016). https://doi.org/10.1140/epja/i2016-16306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16306-8

Navigation