Skip to main content
Log in

Relativistic ion collisions as the source of hypernuclei

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We shortly review the theory of hypernuclei production in relativistic ion collisions, that is adequate to future experiments at BM@N, NICA, and FAIR. Within a hybrid approach we use transport, coalescence and statistical models to describe the whole process. We demonstrate that the origin of hypernuclei can be explained by typical baryon interactions, that is similar to the production of conventional nuclei. In particular, heavy hypernuclei are coming mostly from projectile and target residues, whereas light hypernuclei can be produced at all rapidities. The yields of hypernuclei increase considerably above the energy threshold for \( \Lambda\) hyperon production, and there is a tendency to saturation of yields of hypernuclei with increasing the beam energy up to few TeV. There are unique opportunities in relativistic ion collisions which are difficult to realize in traditional hypernuclear experiments: The produced hypernuclei have a broad distribution in masses and isospin. They can even reach beyond the neutron and proton drip-lines and that opens a chance to investigate properties of exotic hypernuclei. One finds also the abundant production of multi-strange nuclei, of bound and unbound hypernuclear states with new decay modes. In addition, we can directly get an information on the hypermatter both at high and low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Demorest et al., Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  2. J. Antoniadis et al., Science 340, 1233232 (2013)

    Article  Google Scholar 

  3. A. Gal, Phys. Rev. 152, 975 (1966)

    Article  ADS  Google Scholar 

  4. S. Nishizaki, Y. Yamamoto, T. Takatsuka, Prog. Theor. Phys. 105, 607 (2001)

    Article  ADS  Google Scholar 

  5. S. Nishizaki, Y. Yamamoto, T. Takatsuka, Prog. Theor. Phys. 108, 703 (2002)

    Article  ADS  Google Scholar 

  6. D. Lonardoni, S. Gandolfi, F. Pederiva, Phys. Rev. C 87, 041303(R) (2013)

    Article  ADS  Google Scholar 

  7. Y. Yamamoto, T. Furumoto, N. Yasutake, Th.A. Rijken, Phys. Rev. C 88, 022801(R) (2013)

    Article  ADS  Google Scholar 

  8. H. Bando, T. Mottle, J. Zofka, Int. J. Mod. Phys. A 5, 4021 (1990)

    Article  ADS  Google Scholar 

  9. J. Schaffner, C.B. Dover, A. Gal, C. Greiner, H. Stoecker, Phys. Rev. Lett. 71, 1328 (1993)

    Article  ADS  Google Scholar 

  10. W. Greiner, J. Mod. Phys. E 5, 1 (1996)

    Article  ADS  Google Scholar 

  11. O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006)

    Article  ADS  Google Scholar 

  12. J. Schaffner-Bielich, Nucl. Phys. A 804, 309 (2008)

    Article  ADS  Google Scholar 

  13. A. Gal, O. Hashimoto, J. Pochodzalla (Editors), Nucl. Phys. A 881, 1 (2012) Special issue on Progress in Strangeness Nuclear Physics

    Article  Google Scholar 

  14. K. Morita et al., Phys. Rev. C 91, 024916 (2015)

    Article  ADS  Google Scholar 

  15. N. Buyukcizmeci, A.S. Botvina, J. Pochodzalla, M. Bleicher, Phys. Rev. C 88, 014611 (2013)

    Article  ADS  Google Scholar 

  16. T. Hell, W. Weise, Phys. Rev. C 90, 045801 (2014)

    Article  ADS  Google Scholar 

  17. T.A. Armstrong et al., Phys. Rev. C 47, 1957 (1993)

    Article  ADS  Google Scholar 

  18. H. Ohm et al., Phys. Rev. C 55, 3062 (1997)

    Article  ADS  Google Scholar 

  19. HypHI Collaboration (T.R. Saito et al.), Nucl. Phys. A 881, 218 (2012)

    Article  Google Scholar 

  20. C. Rappold et al., Nucl. Phys. A 913, 170 (2013)

    Article  ADS  Google Scholar 

  21. C. Rappold et al., Phys. Rev. C 88, 041001(R) (2013)

    Article  ADS  Google Scholar 

  22. T.R. Saito (for the HypHI Collaboration), talks at the ECT Workshop “Strange Hadronic Matter”, Trento, Italy, 2011, http://www.ectstar.eu/ and NUFRA2011 Conference, Kemer, Turkey, 2011, http://fias.uni-frankfurt.de/historical/nufra2011

  23. A.S. Botvina, I.N. Mishustin, J. Pochodzalla, Phys. Rev. C 86, 011601(R) (2012)

    Article  ADS  Google Scholar 

  24. H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001)

    Article  ADS  Google Scholar 

  25. A. Sanchez Lorente, J. Pochodzalla, A. Botvina, Int. J. Mod. Phys. E 19, 2644 (2010)

    Article  ADS  Google Scholar 

  26. J. Pochodzalla et al., Phys. Rev. C 35, 1695 (1987)

    Article  ADS  Google Scholar 

  27. The STAR Collaboration, Science 328, 58 (2010)

    Article  Google Scholar 

  28. ALICE Collaboration (B. Dönigus et al.), Nucl. Phys. A 904, 547c (2013)

    ADS  Google Scholar 

  29. The PANDA Collaboration, http://www-panda.gsi.de and arXiv:physics/0701090

  30. https://indico.gsi.de/event/superfrs3 (access to pdf files via timetable and key “walldorf”)

  31. C. Rappold, T.R. Saito, C. Scheidenberger, Simulation Study of the Production of Exotic Hypernuclei at the Super-FRS (at GSI Scientific report 2012), GSI Report 2013-1 (2013) http://repository.gsi.de/record/52079

  32. NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome, http://nica.jinr.ru/files/BM@N

  33. M. Danysz, J. Pniewski, Philos. Mag. 44, 348 (1953)

    Article  Google Scholar 

  34. J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995)

    Article  ADS  Google Scholar 

  35. H. Xi et al., Z. Phys. A 359, 397 (1997)

    Article  ADS  Google Scholar 

  36. R.P. Scharenberg et al., Phys. Rev. C 64, 054602 (2001)

    Article  ADS  Google Scholar 

  37. R. Ogul et al., Phys. Rev. C 83, 024608 (2011)

    Article  ADS  Google Scholar 

  38. A.S. Botvina, J. Pochodzalla, Phys. Rev. C 76, 024909 (2007)

    Article  ADS  Google Scholar 

  39. S. Das Gupta, Nucl. Phys. A 822, 41 (2009)

    Article  ADS  Google Scholar 

  40. V. Topor Pop, S. Das Gupta, Phys. Rev. C 81, 054911 (2010)

    Article  ADS  Google Scholar 

  41. M. Agnello et al., Nucl. Phys. A 881, 269 (2012)

    Article  ADS  Google Scholar 

  42. J-PARC E10 Collaboration, Phys. Lett. B 729, 39 (2014)

    Article  Google Scholar 

  43. E. Hiyama, S. Ohnishi, M. Kamimura, Y. Yamamoto, Nucl. Phys. A 908, 29 (2013)

    Article  ADS  Google Scholar 

  44. A. Gal, D.J. Millener, Phys. Lett. B 725, 445 (2013)

    Article  ADS  Google Scholar 

  45. XI International Conference on Hypernuclear and Strange Particle Physics, Barcelona, Spain, 2012, http://icc.ub.edu/congress/HYP2012/talks.php

  46. NUFRA2013: 4-th International Conference on Nuclear Fragmentation, Kemer, Turkey, 2013, http://fias.uni-frankfurt.de/historical/nufra2013

  47. Y.-G. Ma (for the STAR/RHIC Collaboration), talk at the NUFRA2013 Conference, Kemer, Turkey, 2013, http://fias.uni-frankfurt.de/historical/nufra2013

  48. L. Xue et al., Phys. Rev. C 85, 064912 (2012)

    Article  ADS  Google Scholar 

  49. P. Camerini (for the ALICE/LHC Collaboration), talk at the NUFRA2013 Conference, Kemer, Turkey, 2013, http://fias.uni-frankfurt.de/historical/nufra2013

  50. A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Phys. Lett. B 697, 203 (2011)

    Article  ADS  Google Scholar 

  51. J. Steinheimer, K. Gudima, A. Botvina, I. Mishustin, M. Bleicher, H. Stöcker, Phys. Lett. B 714, 85 (2012)

    Article  ADS  Google Scholar 

  52. M. Wakai, H. Bando, M. Sano, Phys. Rev. C 38, 748 (1988)

    Article  ADS  Google Scholar 

  53. Z. Rudy, W. Cassing et al., Z. Phys. A 351, 217 (1995)

    Article  ADS  Google Scholar 

  54. Th. Gaitanos, H. Lenske, U. Mosel, Phys. Lett. B 675, 297 (2009)

    Article  ADS  Google Scholar 

  55. A.S. Botvina, K.K. Gudima, J. Steinheimer, M. Bleicher, I.N. Mishustin, Phys. Rev. C 84, 064904 (2011)

    Article  ADS  Google Scholar 

  56. J. Pochodzalla, Prog. Part. Nucl. Phys. 39, 443 (1997)

    Article  ADS  Google Scholar 

  57. A.S. Botvina, K.K. Gudima, J. Pochodzalla, Phys. Rev. C 88, 054605 (2013)

    Article  ADS  Google Scholar 

  58. V.D. Toneev, N.S. Amelin, K.K. Gudima, S.Yu. Sivoklokov, Nucl. Phys. A 519, 463c (1990)

    Article  ADS  Google Scholar 

  59. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)

    Article  ADS  Google Scholar 

  60. M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    Article  ADS  Google Scholar 

  61. W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008)

    Article  ADS  Google Scholar 

  62. E.L. Bratkovskaya et al., Phys. Rev. C 69, 054907 (2004)

    Article  ADS  Google Scholar 

  63. C. Hartnack et al., Phys. Rep. 510, 119 (2012)

    Article  ADS  Google Scholar 

  64. W. Neubert, A.S. Botvina, Eur. Phys. J. A 7, 101 (2000)

    Article  ADS  Google Scholar 

  65. A.S. Botvina et al., Phys. Lett. B 742, 7 (2015)

    Article  ADS  Google Scholar 

  66. A.S. Lorente, A.S. Botvina, J. Pochodzalla, Phys. Lett. B 697, 222 (2011)

    Article  ADS  Google Scholar 

  67. A.S. Botvina et al., Nucl. Phys. A 881, 228 (2012)

    Article  ADS  Google Scholar 

  68. Th. Aumann, Progr. Part. Nucl. Phys. 59, 3 (2007)

    Article  ADS  Google Scholar 

  69. H. Geissel et al., Nucl. Instrum. Methods Phys. Res. B 204, 71 (2003)

    Article  ADS  Google Scholar 

  70. H. Imal et al., Phys. Rev. C 91, 034605 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Botvina.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botvina, A.S., Bleicher, M., Pochodzalla, J. et al. Relativistic ion collisions as the source of hypernuclei. Eur. Phys. J. A 52, 242 (2016). https://doi.org/10.1140/epja/i2016-16242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16242-7

Navigation