Skip to main content
Log in

Isentropic thermodynamics and scalar-mesons properties near the QCD critical end point

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We investigate the QCD phase diagram and the location of the critical end point (CEP) in the SU(2) Polyakov-Nambu-Jona-Lasinio model with entanglement interaction giving special attention to the \(\pi\) and \( \sigma\)-mesons properties, namely the decay widths \( \sigma\rightarrow\pi\pi\), for several conditions around the CEP: we focus on the possible \( \sigma\rightarrow\pi\pi\) decay along the isentropic trajectories close to the CEP since the hydrodynamical expansion of a heavy-ion collision fireball nearly follows trajectories of constant entropy. It is expected that the type of transition the dense medium goes through as it expands after the thermalization determines the behavior of this decay. It is shown that no pions are produced from the sigma decay in the chirally symmetric phase if the isentropic lines approach the first-order line from chemical potentials above it. Near the CEP or above the \( \sigma\rightarrow\pi\pi\) decay is possible with a high decay width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 81, 024911 (2010)

    Article  ADS  Google Scholar 

  2. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. Lett. 113, 092301 (2014)

    Article  ADS  Google Scholar 

  3. NA49 Collaboration (T. Anticic et al.), Phys. Rev. C 81, 064907 (2010)

    Article  ADS  Google Scholar 

  4. NA49 and NA61/SHINE Collaborations (M. Gazdzicki), J. Phys. G 38, 124024 (2011)

    Article  ADS  Google Scholar 

  5. Y. Akiba, arXiv:1502.02730 [nucl-ex]

  6. P. Costa, M. Ferreira, H. Hansen, D.P. Menezes, C. Providência, Phys. Rev. D 89, 056013 (2014)

    Article  ADS  Google Scholar 

  7. P. Costa, M. Ferreira, D.P. Menezes, J. Moreira, C. Providência, Phys. Rev. D 92, 036012 (2015)

    Article  ADS  Google Scholar 

  8. K. Fukushima, Phys. Rev. D 77, 114028 (2008)

    Article  ADS  Google Scholar 

  9. P. Rehberg, Y.L. Kalinovsky, D. Blaschke, Nucl. Phys. A 622, 478 (1997)

    Article  ADS  Google Scholar 

  10. M.K. Volkov, E.A. Kuraev, D. Blaschke, G. Ropke, S.M. Schmidt, Phys. Lett. B 424, 235 (1998)

    Article  ADS  Google Scholar 

  11. http://nica.jinr.ru/files/BM@N/BMN_CDR.pdf

  12. K. Fukushima, Phys. Rev. C 67, 025203 (2003)

    Article  ADS  Google Scholar 

  13. T. Hatsuda, T. Kunihiro, H. Shimizu, Phys. Rev. Lett. 82, 2840 (1999)

    Article  ADS  Google Scholar 

  14. C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006)

    Article  ADS  Google Scholar 

  15. H. Hansen, W.M. Alberico, A. Beraudo, A. Molinari, M. Nardi, C. Ratti, Phys. Rev. D 75, 065004 (2007)

    Article  ADS  Google Scholar 

  16. F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B 605, 579 (2001)

    Article  ADS  Google Scholar 

  17. Y. Sakai, T. Sasaki, H. Kouno, M. Yahiro, Phys. Rev. D 82, 076003 (2010)

    Article  ADS  Google Scholar 

  18. T.K. Herbst, J.M. Pawlowski, B.J. Schaefer, Phys. Lett. B 696, 58 (2011)

    Article  ADS  Google Scholar 

  19. M. Buballa, Phys. Rep. 407, 205 (2005)

    Article  ADS  Google Scholar 

  20. D.G. d’Enterria, J. Phys. G 34, S53 (2007)

    Article  ADS  Google Scholar 

  21. P. Costa, H. Hansen, M.C. Ruivo, C.A. de Sousa, Phys. Rev. D 81, 016007 (2010)

    Article  ADS  Google Scholar 

  22. C. Nonaka, M. Asakawa, Phys. Rev. C 71, 044904 (2005)

    Article  ADS  Google Scholar 

  23. S. Ejiri, F. Karsch, E. Laermann, C. Schmidt, Phys. Rev. D 73, 054506 (2006)

    Article  ADS  Google Scholar 

  24. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994)

    Article  ADS  Google Scholar 

  25. T. Hatsuda, T. Kunihiro, Prog. Theor. Phys. Suppl. 91, 284 (1987)

    Article  ADS  Google Scholar 

  26. P. Zhuang, Z. Yang, Phys. Rev. D 63, 016004 (2001)

    Article  ADS  Google Scholar 

  27. A.V. Friesen, Y.L. Kalinovsky, V.D. Toneev, Phys. Part. Nucl. Lett. 9, 1 (2012)

    Article  Google Scholar 

  28. J. Hufner, S.P. Klevansky, E. Quack, P. Zhuang, Phys. Lett. B 337, 30 (1994)

    Article  ADS  Google Scholar 

  29. N. Wu, hep-ex/0104050

  30. E791 Collaboration (E.M. Aitala et al.), Phys. Rev. Lett. 86, 770 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Costa.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, P. Isentropic thermodynamics and scalar-mesons properties near the QCD critical end point. Eur. Phys. J. A 52, 228 (2016). https://doi.org/10.1140/epja/i2016-16228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16228-5

Navigation