Skip to main content
Log in

Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and \( \rho\) -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Harakeh, A. Woude, Giant Resonances: Fundamental High-frequency Modes of Nuclear Excitation (Clarendon Press, Oxford, 2001)

  2. A. Krasznahorkay et al., Phys. Rev. Lett. 82, 3216 (1999)

    Article  ADS  Google Scholar 

  3. S. Typel, B.A. Brown, Phys. Rev. C 64, 027302 (2001)

    Article  ADS  Google Scholar 

  4. Facility for Rare Isotope Beams, www.frib.msu.edu

  5. Facility for Antiproton and Ion Research, www.fair-center.eu

  6. P. Navrátil, W.E. Ormand, Phys. Rev. C 68, 034305 (2003)

    Article  ADS  Google Scholar 

  7. B.A. Brown, Prog. Part. Nucl. Phys. 47, 517 (2001)

    Article  ADS  Google Scholar 

  8. E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005)

    Article  ADS  Google Scholar 

  9. S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 1 (1997)

    Article  ADS  Google Scholar 

  10. D.L. Fang, B.A. Brown, T. Suzuki, Phys. Rev. C 88, 024314 (2013)

    Article  ADS  Google Scholar 

  11. J. Engel, M. Bender, J. Dobacwzewski, W. Nazarewicz, R. Surman, Phys. Rev. C 60, 014302 (1999)

    Article  ADS  Google Scholar 

  12. P. Sarriguren, Phys. Rev. C 91, 044304 (2015)

    Article  ADS  Google Scholar 

  13. M. Martini, S. Péru, S. Goriely, Phys. Rev. C 89, 044306 (2014)

    Article  ADS  Google Scholar 

  14. I. Borzov et al., Sov. J. Nucl. Phys. 52, 627 (1990)

    Google Scholar 

  15. T. Nikšić, T. Marketin, D. Vretenar, N. Paar, P. Ring, Phys. Rev. C 71, 014308 (2005)

    Article  ADS  Google Scholar 

  16. H. Liang, N. Van Giai, J. Meng, Phys. Rev. Lett. 101, 122502 (2008)

    Article  ADS  Google Scholar 

  17. S. Drozdz, S. Nishizaki, J. Speth, J. Wambach, Phys. Rep. 197, 1 (1990)

    Article  ADS  Google Scholar 

  18. A.P. Severyukhin, V.V. Voronov, I.N. Borzov, N.N. Arsenyev, N. Van Giai, Phys. Rev. C 90, 044320 (2014)

    Article  ADS  Google Scholar 

  19. Y.F. Niu, G. Colò, M. Brenna, P.F. Bortignon, J. Meng, Phys. Rev. C 85, 034314 (2012)

    Article  ADS  Google Scholar 

  20. Y.F. Niu, G. Colò, E. Vigezzi, Phys. Rev. C 90, 054328 (2014)

    Article  ADS  Google Scholar 

  21. Y.F. Niu, Z.M. Niu, G. Colò, E. Vigezzi, Phys. Rev. Lett. 114, 142501 (2015)

    Article  ADS  Google Scholar 

  22. T. Marketin, E. Litvinova, D. Vretenar, P. Ring, Phys. Lett. B 706, 477 (2012)

    Article  ADS  Google Scholar 

  23. E. Litvinova, B.A. Brown, D.-L. Fang, T. Marketin, R.G.T. Zegers, Phys. Lett. B 730, 307 (2014)

    Article  ADS  Google Scholar 

  24. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 78, 014312 (2008)

    Article  ADS  Google Scholar 

  25. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)

    Article  ADS  Google Scholar 

  26. L.P. Gorkov, Sov. Phys. JETP 7, 505 (1958)

    MathSciNet  Google Scholar 

  27. Y. Nambu, Phys. Rev. 117, 648 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  28. V.I. Tselyaev, Phys. Rev. C 75, 024306 (2007)

    Article  ADS  Google Scholar 

  29. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)

    Article  ADS  Google Scholar 

  30. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New-York, 1980)

  31. J. Speth, E. Werner, W. Wild, Phys. Rep. 33, 127 (1977)

    Article  ADS  Google Scholar 

  32. V.I. Tselyaev, Yad. Fiz. 50, 1252 (1989) (Sov. J. Nucl. Phys. 50

    Google Scholar 

  33. E. Litvinova, Phys. Rev. C 91, 034332 (2015)

    Article  ADS  Google Scholar 

  34. A. Bouyssy, J.-F. Mathiot, N. Van Giai, S. Marcos, Phys. Rev. C 36, 380 (1987)

    Article  ADS  Google Scholar 

  35. N. Paar, T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 69, 054303 (2004)

    Article  ADS  Google Scholar 

  36. H. Liang, P. Zhao, P. Ring, X. Roca-Maza, J. Meng, Phys. Rev. C 86, 021302(R) (2012)

    Article  ADS  Google Scholar 

  37. J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  38. National Nuclear Data Center (NNDC) database, www.nndc.bnl.gov

  39. V.Yu. Ponomarev, C.A. Bertulani, Phys. Rev. Lett. 79, 3853 (1997)

    Article  ADS  Google Scholar 

  40. J.N. Bahcall, Nucl. Phys. 75, 10 (1966)

    Article  Google Scholar 

  41. E. Litvinova, H.P. Loens, K. Langanke, G. Martinez-Pinedo, T. Rauscher, P. Ring, F.-K. Thielemann, V. Tselyaev, Nucl. Phys. A 823, 26 (2009)

    Article  ADS  Google Scholar 

  42. E. Litivnova, Phys. Lett. B 755, 138 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Robin.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robin, C., Litvinova, E. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework. Eur. Phys. J. A 52, 205 (2016). https://doi.org/10.1140/epja/i2016-16205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16205-0

Navigation