Skip to main content
Log in

An evidence of mass-dependent differential kinetic freeze-out scenario observed in Pb-Pb collisions at 2.76 TeV

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Transverse momentum spectra of different particles produced in mid-rapidity interval in lead-lead (Pb-Pb) collisions with different centrality intervals, measured by the ALICE Collaboration at center-of-mass energy per nucleon pair \( \sqrt{s_{NN}} = 2.76\) TeV, are conformably and approximately described by the Tsallis distribution. The dependences of parameters (effective temperature, entropy index, and normalization factor) on event centrality and particle rest mass are obtained. The source temperature at the kinetic freeze-out is obtained to be the intercept in the linear relation between effective temperature and particle rest mass, while the particle (transverse) flow velocity in the source rest frame is extracted to be the slope in the linear relation between mean (transverse) momentum and mean moving mass. It is shown that the source temperature increases with increase of particle rest mass, which exhibits an evidence of mass-dependent differential kinetic freeze-out scenario or multiple kinetic freeze-out scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Acta Phys. Pol. B Proc. Suppl. 5, 555 (2012)

    Article  Google Scholar 

  2. Y. Zhong, C.-B. Yang, X. Cai, S.-Q. Feng, Adv. High Energy Phys. 2015, 193039 (2015)

    Google Scholar 

  3. S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo, N. Sharma, Adv. High Energy Phys. 2015, 349013 (2015)

    Article  Google Scholar 

  4. R.C. Hwa, Adv. High Energy Phys. 2015, 526908 (2015)

    Article  Google Scholar 

  5. G.-L. Ma, M.-W. Nie, Adv. High Energy Phys. 2015, 967474 (2015)

    Google Scholar 

  6. D.D. Ivanenko, D.F. Kurdgelaidze, Astrofizika 1, 479 (1965) (Astrophysics 1

    Google Scholar 

  7. N. Itoh, Prog. Theor. Phys. 44, 291 (1970)

    Article  ADS  Google Scholar 

  8. T.D. Lee, G.C. Wick, Phys. Rev. D 9, 2291 (1974)

    Article  ADS  Google Scholar 

  9. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 92, 024912 (2015)

    Article  ADS  Google Scholar 

  10. R.A. Lacey, Phys. Rev. Lett. 114, 142301 (2015)

    Article  ADS  Google Scholar 

  11. M. Nasim, V. Bairathi, M.K. Sharma, B. Mohanty, A. Bhasin, Adv. High Energy Phys. 2015, 197930 (2015)

    Article  Google Scholar 

  12. R.J. Glauber, in Lectures of Theoretical Physics, edited by W.E. Brittin, L.G. Dunham, Vol. 1 (Interscience, New York, NY, USA, 1959) pp. 315--414

  13. EMU01 Collaboration (M.I. Adamovich et al.), Eur. Phys. J. A 6, 421 (1999)

    Article  ADS  Google Scholar 

  14. P.B. Price, Y.D. He, Phys. Rev. C 43, 835 (1991)

    Article  ADS  Google Scholar 

  15. For the ALICE Collaboration (F. Barile), Proceedings of the 3rd International Conference on New Frontiers in Physics Kolymbari, Crete, Greece, July 28--August 6, 2014, arXiv:1411.1941 [hep-ex] (2014)

  16. ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 024917 (2016)

    Article  ADS  Google Scholar 

  17. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  18. ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 252301 (2012)

    Article  ADS  Google Scholar 

  19. Z.B. Tang, Y.C. Xu, L.J. Ruan, G. van Buren, F.Q. Wang, Z.B. Xu, Phys. Rev. C 79, 051901(R) (2009)

    Article  ADS  Google Scholar 

  20. S. Chatterjee, B. Mohanty, R. Singh, Phys. Rev. C 92, 024917 (2015)

    Article  ADS  Google Scholar 

  21. S. Chatterjee, B. Mohanty, Phys. Rev. C 90, 034908 (2014)

    Article  ADS  Google Scholar 

  22. D. Thakur, S. Tripathy, P. Garg, R. Sahoo, J. Cleymans, arXiv:1601.05223 [hep-ph] (2016)

  23. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  24. T.S. Biró, Eur. Phys. J. A 40, 325 (2009)

    Article  ADS  Google Scholar 

  25. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)

    Article  ADS  Google Scholar 

  26. P.Z. Ning, L. Li, D.F. Min, Foundation of Nuclear Physics: Nucleons and Nuclei (Higher Education Press, Beijing, China, 2003)

  27. F.-H. Liu, Y.-Q. Gao, H.-R. Wei, Adv. High Energy Phys. 2014, 293387 (2014)

    Google Scholar 

  28. F.-H. Liu, Y.-Q. Gao, T. Tian, B.-C. Li, Eur. Phys. J. A 50, 94 (2014)

    Article  ADS  Google Scholar 

  29. F.-H. Liu, J.-S. Li, Phys. Rev. C 78, 044602 (2008)

    Article  ADS  Google Scholar 

  30. F.-H. Liu, Nucl. Phys. A 810, 159 (2008)

    Article  ADS  Google Scholar 

  31. F. Büyükkiliç, Phys. Lett. A 181, 24 (1993)

    Article  MathSciNet  Google Scholar 

  32. J.-C. Chen, Z.-P. Zhang, G.-Z. Su, L.-X. Chen, Y.-G. Shu, Phys. Lett. A 300, 65 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. J.M. Conroy, H.G. Miller, Phys. Rev. D 78, 054010 (2008)

    Article  ADS  Google Scholar 

  34. F. Pennini, A. Plastino, A.R. Plastino, Phys. Lett. A 208, 309 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  35. A.M. Teweldeberhan, A.R. Plastino, H.G. Miller, Phys. Lett. A 343, 71 (2005)

    Article  ADS  Google Scholar 

  36. J.M. Conroy, H.G. Miller, A.R. Plastino, Phys. Lett. A 374, 4581 (2010)

    Article  ADS  Google Scholar 

  37. H. Zheng, L.-L. Zhu, Adv. High Energy Phys. 2016, 9632126 (2016)

    Article  Google Scholar 

  38. H. Zheng, L.-L. Zhu, Adv. High Energy Phys. 2015, 180491 (2015)

    Article  Google Scholar 

  39. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 834, 237c (2010)

    Article  ADS  Google Scholar 

  40. U.W. Heinz, Concepts of Heavy-Ion Physics, Lecture Notes for Lectures Presented at the 2nd CERN -- Latin-American School of High-Energy Physics, San Miguel Regla, Mexico, June 1--14, 2003, arXiv:hep-ph/0407360 (2004)

  41. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 69, 034909 (2004)

    Article  Google Scholar 

  42. S. Takeuchi, K. Murase, T. Hirano, P. Huovinen, Y. Nara, Phys. Rev. C 92, 044907 (2015)

    Article  ADS  Google Scholar 

  43. R. Russo, PhD Thesis, (Università degli Studi di Torino, 2015) arXiv:1511.04380 [nucl-ex] (2015)

  44. E. Schnedermann, J. Sollfrank, U.W. Heinz, Phys. Rev. C 48, 2462 (1993)

    Article  ADS  Google Scholar 

  45. STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  46. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  47. H.-R. Wei, F.-H. Liu, R.A. Lacey, Eur. Phys. J. A 52, 102 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Hu Liu.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lao, HL., Wei, HR., Liu, FH. et al. An evidence of mass-dependent differential kinetic freeze-out scenario observed in Pb-Pb collisions at 2.76 TeV. Eur. Phys. J. A 52, 203 (2016). https://doi.org/10.1140/epja/i2016-16203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16203-2

Navigation