Skip to main content
Log in

Second RPA calculations with the Skyrme and Gogny interactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The Second Random Phase Approximation (SRPA) is a natural extension of RPA where more general excitation operators are introduced. These operators contain, in addition to the one particle-one hole configurations already considered in RPA, also two particle-two hole excitations. Only in the last years, large-scale SRPA calculations have been performed, showing the merits and limits of this approach. In the first part of this paper, we present an overview of recent applications of the SRPA based on the Skyrme and Gogny interactions. Giant resonances in 16O will be studied and their properties discussed by using different models. In particular, we will present the first applications of the SRPA model with the finite-range Gogny interaction, discussing the advantages and drawbacks of using such an interaction in this type of calculations. After that, some more recent results, obtained by using a subtraction procedure to overcome double-counting in the SRPA, will be discussed. We will show that this procedure leads to results that are weakly cutoff dependent and that a strong reduction of the SRPA downwards shift with respect to the RPA spectra is found. Moreover, applying this procedure for the first time in the Gogny-SRPA framework, we will show that this method is able to reduce the anomalous shift found in previous calculations and related to some proton-neutron matrix elements of the residual interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II (Benjamin Press, New York, 1975)

  2. M.N. Harakeh, A. Van der Woude, Giant Resonances (Clarendon Press, Oxford, 2001)

  3. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980)

  4. D.J. Thouless, Nucl. Phys. 21, 225 (1960)

    Article  MathSciNet  Google Scholar 

  5. P. Papakonstantinou, R. Roth, Phys. Lett. B 671, 356 (2009)

    Article  ADS  Google Scholar 

  6. P. Papakonstantinou, R. Roth, Phys. Rev. C 81, 024317 (2010)

    Article  ADS  Google Scholar 

  7. D. Gambacurta, M. Grasso, F. Catara, Phys. Rev. C 81, 054312 (2010)

    Article  ADS  Google Scholar 

  8. D. Gambacurta, M. Grasso, F. Catara, J. Phys. G 38, 035103 (2011)

    Article  ADS  Google Scholar 

  9. D. Gambacurta, M. Grasso, F. Catara, Phys. Rev. C 84, 034301 (2011)

    Article  ADS  Google Scholar 

  10. D. Gambacurta, M. Grasso, V. De Donno, G. Co, F. Catara, Phys. Rev. C 86, 021304(R) (2012)

    Article  ADS  Google Scholar 

  11. V.I. Tselyaev, Phys. Rev. C 88, 054301 (2013)

    Article  ADS  Google Scholar 

  12. D. Gambacurta, M. Grasso, J. Engel, Phys. Rev. C 92, 034303 (2015)

    Article  ADS  Google Scholar 

  13. P. Papakonstantinou, Phys. Rev. C 90, 024305 (2014)

    Article  ADS  Google Scholar 

  14. G. Lauritsch, P.G. Reinhard, Nucl. Phys. A 509, 287 (1990)

    Article  ADS  Google Scholar 

  15. K. Takayanagy, K. Shimizu, A. Arima, Nucl. Phys. A 477, 205 (1988)

    Article  ADS  Google Scholar 

  16. A. Mariano, F. Krmpotic, A.F.R. De Toledo Piza, Phys. Rev. C 49, 2824 (1994)

    Article  ADS  Google Scholar 

  17. D.J. Thouless, Nucl. Phys. 22, 78 (1961)

    Article  MathSciNet  Google Scholar 

  18. D. Gambacurta, F. Catara, M. Grasso, M. Sambataro, M.V. Andrès, E.G. Lanza, Phys. Rev. C 93, 024309 (2016)

    Article  ADS  Google Scholar 

  19. V.I. Tselyaev, Phys. Rev. C 75, 024306 (2007)

    Article  ADS  Google Scholar 

  20. E.V. Litvinova, V.I. Tselyaev, Phys. Rev. C 75, 054318 (2007)

    Article  ADS  Google Scholar 

  21. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. Lett. 105, 022502 (2010)

    Article  ADS  Google Scholar 

  22. T.H.R. Skyrme, Nucl. Phys. 9, 615 (1959)

    Article  Google Scholar 

  23. D. Vautherin, D. Brink, Phys. Rev. C 5, 626 (1972)

    Article  ADS  Google Scholar 

  24. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

    Article  ADS  Google Scholar 

  25. C. Yannouleas, Phys. Rev. C 35, 1159 (1987)

    Article  ADS  Google Scholar 

  26. S. Drozdz, s. Nishizaki, J. Speth, J. Wambach, Phys. Rep. 197, 1 (1990)

    Article  ADS  Google Scholar 

  27. N. Van Giai, H. Sagawa, Phys. Lett. B 106, 379 (1981)

    Article  ADS  Google Scholar 

  28. D. Gambacurta, F. Catara, Phys. Rev. B 79, 085403 (2009)

    Article  ADS  Google Scholar 

  29. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

    Article  ADS  Google Scholar 

  30. J.F. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Gambacurta.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambacurta, D., Grasso, M. Second RPA calculations with the Skyrme and Gogny interactions. Eur. Phys. J. A 52, 198 (2016). https://doi.org/10.1140/epja/i2016-16198-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16198-6

Navigation