New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI

Abstract.

Masses of uranium fission fragments have been measured with the FRagment Separator (FRS) combined with the Experimental Storage Ring (ESR) at GSI. A 410-415 MeV/u 238U projectile beam was fast extracted from the synchrotron SIS-18 with an average intensity of 109/spill. The projectiles were focused on a 1g/cm2 beryllium target at the entrance of the FRS to create neutron-rich isotopes via abrasion-fission. The fission fragments were spatially separated with the FRS and injected into the isochronous storage ring ESR for fast mass measurements without applying cooling. The Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B \(\rho\)-tagging at the high-resolution dispersive central focal plane of the FRS. The evaluation has been done for the combined data sets from both experiments with a new method of data analysis. The use of a correlation matrix has provided experimental mass values for 23 different neutron-rich isotopes for the first time and 6 masses with improved values. The new masses were obtained for nuclides in the element range from Se to Ce. The applied analysis has given access even to rare isotopes detected with an intensity of a few atoms per week. The novel data analysis and systematic error determination are described and the results are compared with extrapolations of experimental values and theoretical models.

This is a preview of subscription content, access via your institution.

References

  1. 1

    A. Bohr, B. Mottelson, Nuclear Structure, Vol. I (World Scientific, 1998)

  2. 2

    F.-K. Thielemann et al., Nucl. Phys. A 751, 301 (2005)

    ADS  Article  Google Scholar 

  3. 3

    H. Geissel (Editors), Encyclopedia of Nuclear Physics and its Applications (Wiley-VCH, 2013)

  4. 4

    Y.A. Litvinov, K. Blaum (Editors), 100 years of Mass Spetrometry, Int. J. Mass Spectrom., Vols. 349-350 (Elsevier, 2013) pp. 1--276.

  5. 5

    T. Kubo et al., Nucl. Instrum. Methods Phys. Res. B 204, (2003)

  6. 6

    J. Kurcewicz et al., Phys. Lett. B 717, 371 (2012)

    ADS  Article  Google Scholar 

  7. 7

    P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995)

    ADS  Article  Google Scholar 

  8. 8

    R. Knöbel et al., Phys. Lett. B 754, 288 (2016)

    ADS  Article  Google Scholar 

  9. 9

    J. Dobaczewski et al., Phys. Rev. Lett. 72, 981 (1994)

    ADS  Article  Google Scholar 

  10. 10

    T. Otsuka et al., Phys. Rev. Lett. 87, (2001)

  11. 11

    C. Thibault et al., Phys. Rev. C 12, 644 (1975)

    ADS  Article  Google Scholar 

  12. 12

    A. Ozawa et al., Phys. Rev. Lett. 84, 5493 (2000)

    ADS  Article  Google Scholar 

  13. 13

    R. Kanungo, Phys. Scr. T 152, 014002 (2013)

    ADS  Article  Google Scholar 

  14. 14

    K. Blaum, M. Block, Hyperfine Interact. 194, 65 (2009)

    ADS  Article  Google Scholar 

  15. 15

    B. Franzke, H. Geissel, G. Münzenberg, Mass Spectrom. Rev. 27, 428 (2008)

    Article  Google Scholar 

  16. 16

    W.R. Plaß, T. Dickel, C. Scheidenberger, Int. J. Mass Spectrom. 349, 134 (2013)

    ADS  Article  Google Scholar 

  17. 17

    M. Hausmann et al., Nucl. Instrum. Methods A 446, 569 (2000)

    ADS  Article  Google Scholar 

  18. 18

    H. Geissel et al., Hyperfine Interact. 173, 49 (2006)

    ADS  Article  Google Scholar 

  19. 19

    H. Geissel et al., Nucl. Instrum. Methods B 70, 286 (1992)

    ADS  Article  Google Scholar 

  20. 20

    T. Radon et al., Nucl. Phys. A 677, 75 (2000)

    ADS  Article  Google Scholar 

  21. 21

    B. Franzke, Nucl. Instrum. Methods B 24/25, 18 (1987)

    ADS  Article  Google Scholar 

  22. 22

    B. Blasche, B. Franczak, in Proceedings of European Particle Accelerator Conference, Vol. 9 (1992) p. 37

  23. 23

    B. Franczak, in Europhysics Conference on Computing in Accelerator Design and Operation (Berlin, 1983)

  24. 24

    B. Sun et al., Nucl. Phys. A 812, 1 (2008)

    ADS  Article  Google Scholar 

  25. 25

    H. Geissel, Microsc. Microanal. 21, Suppl. S4 (2015) 160

  26. 26

    J. Trötscher et al., Nucl. Instrum. Methods B 70, 455 (1992)

    ADS  Article  Google Scholar 

  27. 27

    N. Iwasa, H. Weick, H. Geissel, Nucl. Instrum. Methods B 269, 752 (2011)

    ADS  Article  Google Scholar 

  28. 28

    M. Diwisch, PhD Thesis, Justus-Liebig-University Giessen (2015)

  29. 29

    JYFLTRAP, http://research.jyu.fi/igisol/JYFLTRAP_masses/nrich.html (2012) (Online

  30. 30

    M. Wang, G. Audi, A. Wapstra, Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  31. 31

    P. Hausladen et al., Int. J. Mass Spectrom. 251, 119 (2006)

    ADS  Article  Google Scholar 

  32. 32

    J.V. Schelt et al., Phys. Rev. Lett. 111, 061102 (2013)

    ADS  Article  Google Scholar 

  33. 33

    Y. Aboussir et al., At. Data Nucl. Data Tables 61, 127 (1995)

    ADS  Article  Google Scholar 

  34. 34

    N. Wang, M. Liu, J. Phys. 420, 012057 (2013)

    Google Scholar 

  35. 35

    S. Goriely, N. Chamel, J. Pearson, Phys. Rev. C 88, 024308 (2013)

    ADS  Article  Google Scholar 

  36. 36

    J. Duflo, A. Zuker, Phys. Rev. C 52, R23 (1995)

    ADS  Article  Google Scholar 

  37. 37

    J. Pearson et al., Phys. Lett. B 387, 455 (1996)

    ADS  Article  Google Scholar 

  38. 38

    M. Diwisch et al., Phys. Scr. T 166, 014058 (2015)

    ADS  Article  Google Scholar 

  39. 39

    X. Xing et al., Chin. Phys. C 39, 106201 (2015)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Diwisch.

Additional information

Part of the author’s Doctoral Thesis (Justus-Liebig-Universität Gießen, 2015) contributed to this work.

Communicated by Alexandra Gade

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Knöbel, R., Diwisch, M., Geissel, H. et al. New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI. Eur. Phys. J. A 52, 138 (2016). https://doi.org/10.1140/epja/i2016-16138-6

Download citation

Keywords

  • Mass Measurement
  • Storage Ring
  • Exotic Nucleus
  • Reference Masse
  • Magnetic Rigidity