Skip to main content
Log in

Thermal dileptons from coarse-grained transport as fireball probes at SIS energies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Utilizing a coarse-graining method to convert hadronic transport simulations of Au+Au collisions at SIS energies into local temperature, baryon and pion densities, we compute the pertinent radiation of thermal dileptons based on an in-medium \( \rho\) spectral function that describes available spectra at ultrarelativistic collision energies. In particular, we analyze how far the resulting yields and slopes of the invariant-mass spectra can probe the lifetime and temperatures of the fireball. We find that dilepton radiation sets in after the initial overlap phase of the colliding nuclei of about 7fm/c, and lasts for about 13fm/c. This duration closely coincides with the development of the transverse collectivity of the baryons, thus establishing a direct correlation between hadronic collective effects and thermal EM radiation, and supporting a near local equilibration of the system. This fireball “lifetime” is substantially smaller than the typical 20-30fm/c that naive considerations of the density evolution alone would suggest. We furthermore find that the total dilepton yield radiated into the invariant-mass window of \( M=0.3\) -0.7GeV/c^2 normalized to the number of charged pions, follows a relation to the lifetime found earlier in the (ultra-) relativistic regime of heavy-ion collisions, and thus corroborates the versatility of this tool. The spectral slopes of the invariant-mass spectra above the \( \phi\) -meson mass provide a thermometer of the hottest phases of the collision, and agree well with the maximal temperatures extracted from the coarse-grained hadron spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Rapp, J. Wambach, H. van Hees, The Chiral Restoration Transition of QCD and Low Mass Dileptons, in Landolt-Börnstein, Group I, Vol. 23 (Springer, 2010) p. 134

  2. R. Rapp, H. van Hees, Phys. Lett. B 753, 586 (2016)

    Article  ADS  Google Scholar 

  3. R.D. Pisarski, Phys. Lett. B 110, 155 (1982)

    Article  ADS  Google Scholar 

  4. L.D. McLerran, T. Toimela, Phys. Rev. D 31, 545 (1985)

    Article  ADS  Google Scholar 

  5. C. Gale, J.I. Kapusta, Nucl. Phys. B 357, 65 (1991)

    Article  ADS  Google Scholar 

  6. S. Leupold, V. Metag, U. Mosel, Int. J. Mod. Phys. E 19, 147 (2010)

    Article  ADS  Google Scholar 

  7. P.M. Hohler, R. Rapp, Phys. Lett. B 731, 103 (2014)

    Article  ADS  Google Scholar 

  8. CERES Collaboration (G. Agakichiev et al.), Eur. Phys. J. C 41, 475 (2005)

    Article  ADS  Google Scholar 

  9. NA60 Collaboration (R. Arnaldi et al.), Phys. Rev. Lett. 96, 162302 (2006)

    Article  Google Scholar 

  10. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. Lett. 113, 2, 022301 (2014)

    Google Scholar 

  11. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 92, 024912 (2015)

    Article  ADS  Google Scholar 

  12. STAR Collaboration (P. Huck et al.), Nucl. Phys. A 931, 659 (2014)

    Article  Google Scholar 

  13. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 014904 (2016)

    Article  ADS  Google Scholar 

  14. H. van Hees, R. Rapp, Nucl. Phys. A 806, 339 (2008)

    Article  ADS  Google Scholar 

  15. R. Rapp, Adv. High Energy Phys. 2013, 148253 (2013)

    Article  Google Scholar 

  16. T. Renk, J. Ruppert, Phys. Rev. C 77, 024907 (2008)

    Article  ADS  Google Scholar 

  17. K. Dusling, I. Zahed, Phys. Rev. C 80, 014902 (2009)

    Article  ADS  Google Scholar 

  18. G. Vujanovic et al., Phys. Rev. C 89, 3, 034904 (2014)

    Article  Google Scholar 

  19. J. Ruppert et al., Phys. Rev. Lett. 100, 162301 (2008)

    Article  ADS  Google Scholar 

  20. B. Friman (Editor) et al., Lect. Notes Phys. 814, 1-980 (2011)

    ADS  Google Scholar 

  21. M. Belkacem et al., Phys. Rev. C 58, 1727 (1998)

    Article  ADS  Google Scholar 

  22. A. Lang et al., Z. Phys. A 340, 287 (1991)

    Article  ADS  Google Scholar 

  23. DLS Collaboration (G. Roche et al.), Phys. Lett. B 226, 228 (1989)

    Article  ADS  Google Scholar 

  24. DLS Collaboration (R.J. Porter et al.), Phys. Rev. Lett. 79, 1229 (1997)

    Article  Google Scholar 

  25. HADES Collaboration (G. Agakichiev et al.), Phys. Rev. C 84, 014902 (2011)

    Google Scholar 

  26. HADES Collaboration (T. Galatyuk et al.), Nucl. Phys. A 931, 41 (2014)

    Article  Google Scholar 

  27. S.A. Bass Prog. Part. Nucl. Phys. 412251998

    Article  Google Scholar 

  28. J. Weil, H. van Hees, U. Mosel, Eur. Phys. J. A 48, 111 (2012)

    Article  ADS  Google Scholar 

  29. E.L. Bratkovskaya et al., Phys. Rev. C 87, 6, 064907 (2013)

    Article  Google Scholar 

  30. Gy. Wolf et al., Nucl. Phys. A 517, 615 (1990)

    Article  ADS  Google Scholar 

  31. Gy. Wolf, W. Cassing, U. Mosel, Nucl. Phys. A 545, 139 (1992)

    Article  ADS  Google Scholar 

  32. M. Thomere, C. Hartnack, Gy. Wolf, J. Aichelin, Phys. Rev. C 75, 064902 (2007)

    Article  ADS  Google Scholar 

  33. O. Linnyk et al., Phys. Rev. C 84, 054917 (2011)

    Article  ADS  Google Scholar 

  34. B. Schenke, C. Greiner, Phys. Rev. C 73, 034909 (2006)

    Article  ADS  Google Scholar 

  35. E. Santini, J. Steinheimer, M. Bleicher, S. Schramm, Phys. Rev. C 84, 014901 (2011)

    Article  ADS  Google Scholar 

  36. S. Damjanovic, Prog. Part. Nucl. Phys. 62, 381 (2009)

    Article  Google Scholar 

  37. NA60 Collaboration (H.J. Specht et al.), AIP Conf. Proc. 1322, 1 (2010)

    Google Scholar 

  38. P. Huovinen, M. Belkacem, P.J. Ellis, J.I. Kapusta, Phys. Rev. C 66, 014903 (2002)

    Article  ADS  Google Scholar 

  39. S. Endres, H. van Hees, J. Weil, M. Bleicher, Phys. Rev. C 91, 054911 (2015)

    Article  ADS  Google Scholar 

  40. S. Endres, H. van Hees, J. Weil, M. Bleicher, Phys. Rev. C 92, 014911 (2015)

    Article  ADS  Google Scholar 

  41. E.L. Bratkovskaya, W. Cassing, Nucl. Phys. A 807, 214 (2008)

    Article  ADS  Google Scholar 

  42. O. Buss et al., Phys. Rep. 512, 1 (2012)

    Article  ADS  Google Scholar 

  43. H. Barz, B. Kampfer, Gy. Wolf, M. Zetenyi, Open Nucl. Part. Phys. J. 3, 1 (2010)

    Google Scholar 

  44. Y.B. Ivanov, V.N. Russkikh, V.D. Toneev, Phys. Rev. C 73, 044904 (2006)

    Article  ADS  Google Scholar 

  45. R. Rapp, J. Wambach, Eur. Phys. J. A 6, 415 (1999)

    Article  ADS  Google Scholar 

  46. CLAS Collaboration (M.H. Wood et al.), Phys. Rev. C 78, 015201 (2008)

    Article  Google Scholar 

  47. F. Riek, R. Rapp, Y. Oh, T.-S.H. Lee, Phys. Rev. C 82, 015202 (2010)

    Article  ADS  Google Scholar 

  48. E.V. Shuryak, Rev. Mod. Phys. 65, 1 (1993)

    Article  ADS  Google Scholar 

  49. R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Seck.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galatyuk, T., Hohler, P., Rapp, R. et al. Thermal dileptons from coarse-grained transport as fireball probes at SIS energies. Eur. Phys. J. A 52, 131 (2016). https://doi.org/10.1140/epja/i2016-16131-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16131-1

Keywords

Navigation