Skip to main content
Log in

Study of the neon interaction cross section using the Glauber model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Working within the framework of the Coulomb-modified correlation expansion for the Glauber model S-matrix, we calculate the interaction cross section (\(\sigma_{I}\)) of neon isotopes, 17-32Ne, on 12C at 240 MeV/nucleon. The calculations involve i) up to the two-body density term in the correlation expansion, and ii) the single Gaussian approximation for the nucleon-nucleon amplitude. The colliding nuclei are described with Slater determinants consisting of the harmonic oscillator single-particle wave functions. The sole input of the density of each colliding nucleus, the oscillator constant, is fixed from the respective root-mean-square (rms) radius calculated using the relativistic mean-field approach. It is found that the calculated results for \(\sigma_{I}\) generally provide fairly good agreement with the experimental data except for 31Ne, for which the required rms neutron radius comes closer to the one obtained earlier using the extended (halo-like) neutron density distribution. This finding is also supported by our predicted differential cross section of 31Ne on 12C at 240 MeV/nucleon. However, as expected, the results of the present analysis are unable to discriminate between the halo and non-halo structure of 31Ne. In conclusion, our results suggest that the present calculations can be considered as a good starting point to predict the rms matter radii of exotic neutron-rich nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  2. J. Meng, P. Ring, Phys. Rev. Lett. 77, 3963 (1996)

    Article  ADS  Google Scholar 

  3. J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1984)

    Article  ADS  Google Scholar 

  4. I. Tanihata et al., Phys. Lett. B 206, 592 (1988)

    Article  ADS  Google Scholar 

  5. M. Fukuda et al., Phys. Lett. B 268, 339 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Nakamura et al., Phys. Rev. Lett. 83, 1112 (1999)

    Article  ADS  Google Scholar 

  7. A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003)

    Article  ADS  Google Scholar 

  8. K. Tanaka et al., Phys. Rev. Lett. 104, 062701 (2010)

    Article  ADS  Google Scholar 

  9. M. Sharma, A. Bhagwat, Z.A. Khan, W. Haider, Y.K. Gambhir, Phys. Rev. C 83, 031601(R) (2011)

    Article  ADS  Google Scholar 

  10. E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990)

    Article  ADS  Google Scholar 

  11. T. Nakamura et al., Phys. Rev. Lett. 103, 262501 (2009)

    Article  ADS  Google Scholar 

  12. M. Takechi et al., Mod. Phys. Lett. A 25, 1878 (2010)

    Article  ADS  Google Scholar 

  13. M. Takechi et al., Phys. Lett. B 707, 357 (2012)

    Article  ADS  Google Scholar 

  14. Kosho Minomo et al., Phys. Rev. Lett. 108, 052503 (2012)

    Article  ADS  Google Scholar 

  15. I. Ahmad, J. Phys. G 6, 947 (1980)

    Article  ADS  Google Scholar 

  16. W. Czyz, L.C. Maximon, Ann. Phys. (N.Y.) 52, 59 (1969)

    Article  ADS  Google Scholar 

  17. V. Franco, G.K. Varma, Phys. Rev. C 18, 349 (1978)

    Article  ADS  Google Scholar 

  18. V. Franco, G.K. Varma, Phys. Rev. C 12, 225 (1975)

    Article  ADS  Google Scholar 

  19. G. Fäldt, H. Pilkuhn, Phys. Lett. B 46, 337 (1973)

    Article  ADS  Google Scholar 

  20. A. Ozawa, Nucl. Phys. A 709, 60 (2002)

    Article  ADS  Google Scholar 

  21. G.D. Alkhazov et al., Nucl. Phys. A 712, 269 (2002)

    Article  ADS  Google Scholar 

  22. B. Abu-Ibrahim, W. Horiuchi, A. Kohama, Y. Suzuki, Phys. Rev. C 77, 034607 (2008)

    Article  ADS  Google Scholar 

  23. W. Horiuchi, Y. Suzuki, B. Abu Ibrahim, A. Kohama, Phys. Rev. C 75, 044607 (2007) 76

    Article  ADS  Google Scholar 

  24. J. Meng, I. Tanihata, S. Yamaji, Phys. Lett. B 419, 1 (1998)

    Article  ADS  Google Scholar 

  25. J. Meng, S.-G. Zhou, I. Tanihata, Phys. Lett. B 532, 209 (2002)

    Article  ADS  Google Scholar 

  26. J. Meng et al., Prog. Part. Nucl. Phys. 57, 470 (2006)

    Article  ADS  Google Scholar 

  27. Shan-Gui Zhou, Jie Meng, P. Ring, En-Guang Zhao, Phys. Rev. C 82, 011301(R) (2010)

    Article  ADS  Google Scholar 

  28. Deeksha Chauhan, Z.A. Khan, A.A. Usmani, Phys. Rev. C 90, 024603 (2014)

    Article  ADS  Google Scholar 

  29. T. Sumi et al., Phys. Rev. C 85, 064613 (2012)

    Article  ADS  Google Scholar 

  30. W. Horiuchi et al., Phys. Rev. C 86, 024614 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhel Ahmad.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Chauhan, D., Usmani, A.A. et al. Study of the neon interaction cross section using the Glauber model. Eur. Phys. J. A 52, 128 (2016). https://doi.org/10.1140/epja/i2016-16128-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16128-8

Keywords

Navigation