Skip to main content
Log in

Decay of the excited compound system 48Cr* formed through 24Mg + 24Mg , 36Ar + 12C and 20Ne + 28Si reactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The total cross section, the intermediate mass fragment (IMF) production cross section, and the cross section for the formation of light particle (LP) for the decay of 48Cr* formed through the entrance channel 24Mg + 24Mg , have been evaluated using the barrier penetration model, taking the scattering potential as the sum of the Coulomb and nuclear proximity potential, for various ECM values. The computed results have been compared with the available experimental data of the total cross section corresponding to E CM = 44.4 MeV for the entrance channel 24Mg + 24Mg , and were found to be in good agreement. The experimental values for the LP production cross section for the channel 24Mg + 24Mg were also seen to be agreeing with our calculations. Hence we have extended our studies and have thus computed the total cross section, IMF cross section and LP cross section for the decay of 48Cr* formed through the other two entrance channels 36Ar + 12C , and 20Ne + 28Si with different ECM values. It was found that the computed total cross sections for the entrance channel 36Ar + 12C with E CM = 47 MeV agree well with the corresponding experimental values. Hence, we hope that our predictions on the evaluations of the IMF cross sections and the light charged particle cross sections for the decay of 48Cr* , formed through the two entrance channels 36Ar + 12C , and 20Ne + 28Si , can be used for further experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Sanders, D.G. Kovar, B.B. Back, B.K. Dichter, D. Henderson, R.V.F. Jansens, J.G. Kerllers, S. Kaufman, T.F. Wang, B. Wilkins, F. Videbaek, Phys. Rev. Lett. 59, 2956 (1987)

    Google Scholar 

  2. C. Beck, B. Djerroud, B. Heusch, R. Dayras, R.M. Freeman, F. Haas, A. Hachem, J.P. Wieleczko, M. Youlal, Z. Phys. A 334, 521 (1989)

    ADS  Google Scholar 

  3. A. Ray, D. Shapira, J. Gomez del Campo, H.J. Kim, C. Beck, B. Djerroud, B. Heusch, D. Blumenthal, B. Shivakumar, Phys. Rev. C 44, 514 (1991)

    Article  ADS  Google Scholar 

  4. C. Bhattacharya, D. Bandyopadhay, K. Krihsam, S.K. Basu, S. Bhattacharya, G.S.N. Murthy, A. Chatterjee, S. Keilas, P. Singh, Phys. Rev. C 54, 3099 (1996)

    Article  ADS  Google Scholar 

  5. R.R. Betts, H.G Clerk, B.B. Back, I. Ahmed, K.L. Wolf, B.G. Glagola, Phys. Rev. Lett. 46, 313 (1981)

    Article  ADS  Google Scholar 

  6. R.W. Zurmuhle, P. Kutt, R.R. Betts, S. Saini, F. Haas, O. Hansen, Phys. Lett. B 129, 384 (1983)

    Article  ADS  Google Scholar 

  7. S.J. Sanders, Phys. Rev. C 44, 2676 (1991)

    Article  ADS  Google Scholar 

  8. S.J. Sanders, A. Hassan, F.W. Prosser, B.B. Back, R.R. Betts, M.P. Carpenter, D.J. Henderson, R.V.F. Janssens, T.L. Khoo, E.F. Moore, P.R. Wilt, F.L.H. Wolfs, A.H. Wuosmaa, K.B. Beard, Ph. Benet, Phys. Rev. C 49, 1016 (1994)

    Article  ADS  Google Scholar 

  9. A.H. Wuosmaa, R.W. Zurmuhle, P.H. Kutt, S.F. Pate, S. Saini, M.L. Halbert, D.C. Hensley, Phys. Rev. Lett. 58, 1312 (1987)

    Article  ADS  Google Scholar 

  10. A.H. Wuosmaa, R.W. Zurmuhle, P.H. Kutt, S.F. Pate, S. Saini, M.L. Halbert, D.C. Hensley, Phys. Rev. C 41, 2666 (1990)

    Article  ADS  Google Scholar 

  11. A.T. Hassan, S.J. Sanders, K.A. Farrar, F.W. Prosser, B.B. Back, R.R. Betts, M. Freer, D.J. Henderson, R.V.F. Janssens, A.H. Wuosmaa, Phys. Rev. C 49, 1031 (1994)

    Article  ADS  Google Scholar 

  12. K.A. Farrar, S.J. Sanders, A.K. Dummer, A.T. Hassan, F.W. Prosser, Phys. Rev. C 54, 1249 (1996)

    Article  ADS  Google Scholar 

  13. S.J. Sanders, D.J. Kovar, B.B. Back, C. Beck, C.J. Henderson, R.V.F. Janssend, T.F. Wang, B.D. Wilkins, Phys. Rev. C 40, 2091 (1989)

    Article  ADS  Google Scholar 

  14. R.J. Charity, M.A. McMahan, G.J. Wozniak, R.J. McDonald, L.G. Moretto, D.G. Sarantites, L.G. Sobotka, G. Guarino, A. Pantaleo, F. Fiore, A. Gobbi, K.D. Hildenbrand, Nucl. Phys. A 483, 43 (1988)

    Article  Google Scholar 

  15. J. Gomez del Campo, R.L. Auble, J.R. Beene, M.L. Halbert, H.J. Kim, Phys. Rev. C 43, 2689 (1991)

    Article  ADS  Google Scholar 

  16. T. Matsuse, C. Beck, R. Nouicer, D. Mahboub, Phys. Rev. C 55, 1380 (1997)

    Article  ADS  Google Scholar 

  17. R. Nouicer, C. Beck, R.M. Freeman, F. Hass, N. Aissaoui, T. Bellot, G. de France, D. Disdier, G. Duchene, A. Elanique, A. Hchem, F. Hoellinger, D. Mahboub, V. Rauch, S.J. Sanders, A. Dummer, F.W. Prosser, A. Szanto de Toledo, SI.n Cavallaro, E. Uegaki, Y. Abe, Phys. Rev. C 60, 041303 (1999)

    Article  ADS  Google Scholar 

  18. L.G. Moretto, Nucl. Phys. A 247, 211 (1975)

    Article  ADS  Google Scholar 

  19. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)

  20. D.N. Poenaru, W. Greiner, E. Hourani, Phys. Rev. C 51, 594 (1995)

    Article  ADS  Google Scholar 

  21. K.P. Santhosh, Antony Joseph, Pramana. J. Phys. 59, 599 (2002)

    Article  ADS  Google Scholar 

  22. S. Gary, C. Volant, Phys. Rev. C 25, 1877 (1982)

    Article  ADS  Google Scholar 

  23. M.K. Sharma, R.K. Gupta, W. Scheid, J. Phys. G 26, L45 (2000)

    Article  ADS  Google Scholar 

  24. R.K. Gupta, M. Balasubramaniam, C. Mazzocchi, M. La Commara, W. Scheid, Phys. Rev. C 65, 024601 (2002)

    Article  ADS  Google Scholar 

  25. R.K. Gupta, R. Kumar, N.K. Dhiman, M. Balasubramaniam, W. Scheid, C. Beck, Phys. Rev. C 68, 014610 (2003)

    Article  ADS  Google Scholar 

  26. M. Balasubramaniam, R. Kumar, R.K. Gupta, C. Beck, W. Scheid, J. Phys. G 29, 2703 (2003)

    Article  ADS  Google Scholar 

  27. R.K. Gupta, Acta Phys. Hung. New Ser. Heavy Ion Phys. 18, 347 (2003)

    Article  ADS  Google Scholar 

  28. R.K. Gupta, M. Balasubramania, R. Kumar, D. Singh, C. Beck, Nucl. Phys. A 738, 479 (2004)

    Article  ADS  Google Scholar 

  29. C. Karthikraj, N.S. Rajeswari, M. Balasubramaniam, Phys. Rev. C 86, 014613 (2012)

    Article  ADS  Google Scholar 

  30. B. Singh, M.K. Sharma, R.K. Gupta, W. Greiner, Int. J. Mod. Phys. E 15, 699 (2006)

    Article  ADS  Google Scholar 

  31. B. Singh, M.K. Sharma, R.K. Gupta, Phys. Rev. C 77, 054613 (2008)

    Article  ADS  Google Scholar 

  32. M. Kaur, R. Kumar, M.K. Sharma, Phys. Rev. C 85, 014609 (2012)

    Article  ADS  Google Scholar 

  33. K.P. Santhosh, V. Bobby Jose, A. Joseph, K.M. Varier, Nucl. Phys. A 817, 35 (2009)

    Article  ADS  Google Scholar 

  34. K.P. Santhosh, V. Bobby Jose, Nucl. Phys. A 922, 191 (2014)

    Article  ADS  Google Scholar 

  35. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977)

    Article  ADS  Google Scholar 

  36. J. Blocki, W.J. Swiatecki, Ann. Phys. (N.Y.) 132, 53 (1981)

    Article  ADS  Google Scholar 

  37. K.P. Santhosh, V. Bobby Jose, Rom. Rep. Phys. 66, 939 (2014)

    Google Scholar 

  38. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

    Article  ADS  Google Scholar 

  39. D. Glas, U. Mosel, Phys. Rev. C 10, 2620 (1974)

    Article  ADS  Google Scholar 

  40. G. Royer, J. Mignen, J. Phys. G: Nucl. Part. Phys. 18, 1781 (1992)

    Article  ADS  Google Scholar 

  41. K.J. Le Couteur, D.W. Lang, Nucl. Phys. 13, 32 (1959)

    Article  Google Scholar 

  42. R.K. Gupta, M. Balasubramaniam, R. Kumar, N. Singh, M. Manhas, W. Greiner, J. Phys. G: Nucl. Part. Phys. 31, 631 (2005)

    Article  ADS  Google Scholar 

  43. N. Malhotra, R.K. Gupta, Phys. Rev. C 31, 1179 (1985)

    Article  ADS  Google Scholar 

  44. B.V. Carlson, L.C. Chamon, L.R. Gasques, Phys. Rev. C 70, 057602 (2004)

    Article  ADS  Google Scholar 

  45. N. Takigawa, T. Rumin, N. Ihara, Phys. Rev. C 61, 044607 (2000)

    Article  ADS  Google Scholar 

  46. A.J. Baltz, B.F. Bayman, Phys. Rev. C 26, 1969 (1982)

    Article  ADS  Google Scholar 

  47. T.D. Thomas, Phys. Rev. 116, 703 (1959)

    Article  ADS  Google Scholar 

  48. J. Huizenga, G. Igo, Nucl. Phys. 29, 462 (1961)

    Article  Google Scholar 

  49. J. Rasmussen, K. Sugawara-Tanabe, Nucl. Phys. A 171, 496 (1971)

    Article  ADS  Google Scholar 

  50. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)

    Article  ADS  Google Scholar 

  51. J. Galin, D. Guerreau, M. Lefort, X. Tarrago, Phys. Rev. C 9, 1018 (1974)

    Article  ADS  Google Scholar 

  52. H.H. Gutbrod, W.G. Winn, M. Blann, Nucl. Phys. A 213, 267 (1973)

    Article  ADS  Google Scholar 

  53. www.nds.iaea.org/RIPL-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Santhosh.

Additional information

Communicated by F. Nunes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, K.P., Subha, P.V. & Priyanka, B. Decay of the excited compound system 48Cr* formed through 24Mg + 24Mg , 36Ar + 12C and 20Ne + 28Si reactions. Eur. Phys. J. A 52, 125 (2016). https://doi.org/10.1140/epja/i2016-16125-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16125-y

Keywords

Navigation