Skip to main content
Log in

Probing nuclear bubble configuration by the \(\pi^{-} / \pi^{+}\) ratio in heavy-ion collisions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

It is theoretically and experimentally argued that there may exist bubble or toroid-shaped configurations in some nucleus systems. Based on the isospin-dependent transport model of nucleus-nucleus collisions, here we propose a method to probe the bubble configuration in the nucleus. That is, one could use the value of the \( \pi^{-} / \pi^{+}\) ratio especially its kinetic energy distribution in head-on collision at intermediate energies to probe whether there is bubble configuration or not in projectile and target nuclei. Due to different maximum compressions and the effect of symmetry energy, the value of the \(\pi^{-} / \pi^{+}\) ratio in the collision of bubble nuclei is evidently larger than that in the collision of normal nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Dechargé, J.F. Berger, K. Dietrich, M.S. Weiss, Phys. Lett. B 451, 275 (1999)

    Article  ADS  Google Scholar 

  2. J. Dechargé, J.F. Berger, M. Girod, K. Dietrich, Nucl. Phys. A 716, 55 (2003)

    Article  ADS  Google Scholar 

  3. W. Nazarewicz et al., Nucl. Phys. A 701, 165 (2002)

    Article  ADS  Google Scholar 

  4. H.A. Wilson, Phys. Rev. 69, 538 (1946)

    Article  ADS  Google Scholar 

  5. P.J. Siemens, H.A. Bethe, Phys. Rev. Lett. 18, 704 (1967)

    Article  ADS  Google Scholar 

  6. M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972)

    Article  ADS  Google Scholar 

  7. C.Y. Wong, Phys. Lett. B 41, 446 (1972)

    Article  ADS  Google Scholar 

  8. C.Y. Wong, Phys. Lett. B 41, 451 (1972)

    Article  ADS  Google Scholar 

  9. K.T.R. Davies, C.Y. Wong, S.J. Krieger, Phys. Lett. B 41, 455 (1972)

    Article  ADS  Google Scholar 

  10. X. Campi, D.W.L. Sprung, Phys. Lett. B 46, 291 (1973)

    Article  ADS  Google Scholar 

  11. Y. Yu, A. Bulgac, P. Magierski, Phys. Rev. Lett. 84, 412 (2000)

    Article  ADS  Google Scholar 

  12. C.Y. Wong, Ann. Phys. 77, 279 (1973)

    Article  ADS  Google Scholar 

  13. L.G. Moretto, K. Tso, G.J. Wozniak, Phys. Rev. Lett. 78, 824 (1997)

    Article  ADS  Google Scholar 

  14. M. Borunda, J.A. López, Nuovo Cimento A 107, 2773 (1994)

    Article  ADS  Google Scholar 

  15. W. Bauer, George F. Bertsch, Hartmut Schulz, Phys. Rev. Lett. 69, 1888 (1992)

    Article  ADS  Google Scholar 

  16. D.H.E. Gross, Bao-An Li, A.R. DeAngelis, Ann. Phys. (Berlin) 504, 467 (1992)

    Article  ADS  Google Scholar 

  17. Bao-An Li, D.H.E. Gross, Nucl. Phys. A 554, 257 (1993)

    Article  ADS  Google Scholar 

  18. H.M. Xu, J.B. Natowitz, C.A. Gagliardi, R.E. Tribble, C.Y. Wong, W.G. Lynch, Phys. Rev. C 48, 933 (1993)

    Article  ADS  Google Scholar 

  19. K. Cherevko, L. Bulavin, J. Su, V. Sysoev, F.S. Zhang, Phys. Rev. C 89, 014618 (2014)

    Article  ADS  Google Scholar 

  20. G.C. Yong, Phys. Rev. C 93, 014602 (2016)

    Article  ADS  Google Scholar 

  21. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

    Article  Google Scholar 

  22. K. Dietrich, K. Pomorski, Nucl. Phys. A 627, 175 (1997)

    Article  ADS  Google Scholar 

  23. K. Dietrich, K. Pomorski, Phys. Rev. Lett. 80, 37 (1998)

    Article  ADS  Google Scholar 

  24. J.M. Yao, H. Mei, Z.P. Li, Phys. Lett. B 723, 459 (2013)

    Article  ADS  Google Scholar 

  25. R. Najman et al., Phys. Rev. C 92, 064614 (2015)

    Article  ADS  Google Scholar 

  26. T. Suda et al., Phys. Rev. Lett. 102, 102501 (2009)

    Article  ADS  Google Scholar 

  27. A.N. Antonov et al., Nucl. Instrum. Methods Phys. Res. A 637, 60 (2011)

    Article  ADS  Google Scholar 

  28. G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)

    Article  ADS  Google Scholar 

  29. The CLAS Collaboration (O. Hen et al.), Science 346, 614 (2014)

    Article  Google Scholar 

  30. G.C. Yong, arXiv:1503.08523 (2015)

  31. Hall A. Collaboration (R. Subedi et al.), Science 320, 1476 (2008)

    Article  Google Scholar 

  32. B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005)

    Article  ADS  Google Scholar 

  33. B.J. Cai, B.A. Li, Phys. Rev. C 92, 011601 (2015)

    Article  ADS  Google Scholar 

  34. O. Hen, B.A. Li, W.J. Guo, L.B. Weinstein, E. Piasetzky, Phys. Rev. C 91, 025803 (2015)

    Article  ADS  Google Scholar 

  35. J. Xu, L.W. Chen, B.A. Li, H.R. Ma, Astrophys .J. 697, 1549 (2009)

    Article  ADS  Google Scholar 

  36. C. Xu, B.A. Li, L.W. Chen, Phys. Rev. C 82, 054607 (2010)

    Article  ADS  Google Scholar 

  37. G.C. Yong, arXiv:1504.02528 (2015)

  38. Q.F. Li, Z.X. Li, S. Soff, M. Bleicher, H. Stöcker, J. Phys. G 32, 407 (2006)

    Article  ADS  Google Scholar 

  39. T. Song, C.M. Ko, Phys. Rev. C 91, 014901 (2015)

    Article  ADS  Google Scholar 

  40. B.A. Li, G.C. Yong, W. Zuo, Phys. Rev. C 71, 014608 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao-Chan Yong.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, GC. Probing nuclear bubble configuration by the \(\pi^{-} / \pi^{+}\) ratio in heavy-ion collisions. Eur. Phys. J. A 52, 118 (2016). https://doi.org/10.1140/epja/i2016-16118-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16118-x

Keywords

Navigation