Skip to main content
Log in

Kinetic freeze-out temperature and flow velocity extracted from transverse momentum spectra of final-state light flavor particles produced in collisions at RHIC and LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The transverse momentum spectra of final-state light flavor particles produced in proton-proton (p -p , copper-copper (Cu-Cu), gold-gold (Au-Au), lead-lead (Pb-Pb), and proton-lead (p -Pb) collisions for different centralities at relativistic heavy ion collider (RHIC) and large hadron collider (LHC) energies are studied in the framework of a multisource thermal model. The experimental data measured by the STAR, CMS, and ALICE Collaborations are consistent with the results calculated by the multi-component Erlang distribution and Tsallis Statistics. The effective temperature and real temperature (kinetic freeze-out temperature) of the interacting system at the stage of kinetic freeze-out, the mean transverse flow velocity and mean flow velocity of particles, and the relationships between them are extracted. The dependences of effective temperature and mean (transverse) momentum on rest mass, moving mass, centrality, and center-of-mass energy, and the dependences of kinetic freeze-out temperature and mean (transverse) flow velocity on centrality, center-of-mass energy, and system size are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004)

    Article  ADS  Google Scholar 

  2. E. Schnedermann, J. Sollfrank, U.W. Heinz, Phys. Rev. C 48, 2462 (1993)

    Article  ADS  Google Scholar 

  3. J. Stachel, A. Andronic, P. Braun-Munzinger, K. Redlich, J. Phys. Conf. Ser. 509, 012019 (2014)

    Article  ADS  Google Scholar 

  4. L.D. Landau, Izv. Akad. Nauk SSSR Ser. Fiz. 17, 51 (1953) English translation in Collected Papers of L.D. Landau

    Google Scholar 

  5. I.M. Khalatnikov, J. Exp. Theor. Phys. 27, 529 (1954) (in Russian)

    Google Scholar 

  6. P.A. Steinberg, Nucl. Phys. A 752, 423 (2005)

    Article  ADS  Google Scholar 

  7. L.-N. Gao, F.-H. Liu, Adv. High Energy Phys. 2015, 641906 (2015)

    Google Scholar 

  8. F.-H. Liu, Nucl. Phys. A 810, 159 (2008)

    Article  ADS  Google Scholar 

  9. F.-H. Liu, J.-S. Li, Phys. Rev. C 78, 044602 (2008)

    Article  ADS  Google Scholar 

  10. F.-H. Liu, Y.-Q. Gao, T. Tian, B.-C. Li, Eur. Phys. J. A 50, 94 (2014)

    Article  ADS  Google Scholar 

  11. F.-H. Liu, H.-R. Wei, R.A. Lacey, Eur. Phys. J. A 51, 43 (2015)

    Article  ADS  Google Scholar 

  12. L.-N. Gao, F.-H. Liu, Adv. High Energy Phys. 2015, 184713 (2015)

    Google Scholar 

  13. H.-R. Wei, Y.-H Chen, L.-N. Gao, F.-H. Liu, Adv. High Energy Phys. 2014, 782631 (2014)

    Article  Google Scholar 

  14. H. Zhao, F.-H. Liu, Adv. High Energy Phys. 2014, 137058 (2014)

    Google Scholar 

  15. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 034909 (2009)

    Article  Google Scholar 

  16. STAR Collaboration (G. Agakishiev et al.), Phys. Rev. Lett. 108, 072301 (2012)

    Article  ADS  Google Scholar 

  17. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 97, 152301 (2006)

    Article  Google Scholar 

  18. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 99, 112301 (2007)

    Article  Google Scholar 

  19. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 98, 062301 (2007)

    Article  Google Scholar 

  20. CMS Collaboration (S. Chatrchyan et al.), Eur. Phys. J. C 72, 2164 (2012)

    Article  ADS  Google Scholar 

  21. ALICE Collaboration (K. Aamodt et al.), Eur. Phys. J. C 71, 1594 (2011)

    Article  ADS  Google Scholar 

  22. ALICE Collaboration (M. Floris et al.), J. Phys. G 38, 124025 (2001)

    Google Scholar 

  23. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  24. ALICE Collaboration (B. Abelev et al.), Phys. Rev C 91, 024609 (2015)

    Article  ADS  Google Scholar 

  25. ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 728, 25 (2014)

    Article  ADS  Google Scholar 

  26. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Tsallis, Braz. J. Phys. 39, 337 (2009)

    Article  ADS  Google Scholar 

  28. W.M. Alberico, A. Lavagno, Eur. Phys. J. A 40, 313 (2009)

    Article  ADS  Google Scholar 

  29. G. Wilk, Z. Włodarczyk, Phys. Rev. C 79, 054903 (2009)

    Article  ADS  Google Scholar 

  30. G. Wilk, Z. Włodarczyk, arXiv:hep-ph/0011189v2

  31. W.M. Alberico, P. Czerski, A. Lavagno, M. Nardi, V. Somá, arXiv:hep-ph/0510271v2

  32. B.-C. Li, Y.-Z. Wang, F.-H. Liu, Phys. Lett. B 275, 352 (2013)

    Article  ADS  Google Scholar 

  33. T.S. Biró, Eur. Phys. J. A 40, 255 (2009)

    Article  ADS  Google Scholar 

  34. T.S. Biró, Physica A 392, 3132 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. T.S. Biró G. Purcsel, K. Urmossy, Eur. Phys. J. A 40, 325 (2009)

    Article  ADS  Google Scholar 

  36. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)

    Article  ADS  Google Scholar 

  37. K. Urmossy, G.G. Barnaföldi, Sz. Harangozó, T.S. Biró, Z. Xu, arXiv:1501.02352

  38. K. Urmossy, T.S. Biró, G.G. Barnaföldi, Z. Xu, arXiv:1501.05959

  39. U.W. Heinz, arXiv:hep-ph/0407360

  40. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 69, 034909 (2004)

    Article  Google Scholar 

  41. S. Takeuchi, K. Murase, T. Hirano, P. Huovinen, Y. Nara, Phys. Rev. C 92, 044907 (2015)

    Article  ADS  Google Scholar 

  42. R. Russo, arXiv:1511.04380

  43. H.-R. Wei, F.-H. Liu, R.A. Lacey, arXiv:1509.09083

  44. ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 024917 (2015)

    ADS  Google Scholar 

  45. Z. Fodor, S.D. Katz, JHEP 04, 050 (2004)

    Article  ADS  Google Scholar 

  46. S. Datta, R.V. Gavai, S. Gupta, Nucl. Phys. A 904-905, 883c (2013)

    Article  ADS  Google Scholar 

  47. N. Xu for the STAR Collaboration, Nucl. Phys. A 931, 1 (2014)

    Article  Google Scholar 

  48. F.-H. Liu, H.-L. Lao, Indian J. Phys. (2016) DOI:10.1007/s12648-016-0846-5

  49. M. Floris, Nucl. Phys. A 931, 103 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Hu Liu.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, HR., Liu, FH. & Lacey, R.A. Kinetic freeze-out temperature and flow velocity extracted from transverse momentum spectra of final-state light flavor particles produced in collisions at RHIC and LHC. Eur. Phys. J. A 52, 102 (2016). https://doi.org/10.1140/epja/i2016-16102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16102-6

Keywords

Navigation