Skip to main content
Log in

Decorrelation of anisotropic flow along the longitudinal direction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity (\( \eta\) . Decorrelation of the 2nd- and 3rd-order anisotropic flow with different \( \eta\) gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large \( \eta\) gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Paul Romatschke, Ulrike Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

    Article  Google Scholar 

  2. Matthew Luzum, Paul Romatschke, Phys. Rev. C 78, 034915 (2008) Phys. Rev. C 79

    Article  ADS  Google Scholar 

  3. Huichao Song, Ulrich W. Heinz, Phys. Lett. B 658, 279 (2008)

    Article  ADS  Google Scholar 

  4. Huichao Song, Ulrich W. Heinz, Phys. Rev. C 77, 064901 (2008)

    Article  ADS  Google Scholar 

  5. K. Dusling, D. Teaney, Phys. Rev. C 77, 034905 (2008)

    Article  ADS  Google Scholar 

  6. Denes Molnar, Pasi Huovinen, J. Phys. G 35, 104125 (2008)

    Article  ADS  Google Scholar 

  7. Piotr Bozek, Phys. Rev. C 81, 034909 (2010)

    Article  ADS  Google Scholar 

  8. A.K. Chaudhuri, J. Phys. G 37, 075011 (2010)

    Article  ADS  Google Scholar 

  9. Bjorn Schenke, Sangyong Jeon, Charles Gale, Phys. Rev. Lett. 106, 042301 (2011)

    Article  ADS  Google Scholar 

  10. Bjorn Schenke, Sangyong Jeon, Charles Gale, Phys. Rev. C 85, 024901 (2012)

    Article  ADS  Google Scholar 

  11. Tetsufumi Hirano, Yasushi Nara, Phys. Rev. C 79, 064904 (2009)

    Article  Google Scholar 

  12. B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010) Phys. Rev. C 82

    Article  ADS  Google Scholar 

  13. Burak Han Alver, Clement Gombeaud, Matthew Luzum, Jean-Yves Ollitrault, Phys. Rev. C 82, 034913 (2010)

    Article  ADS  Google Scholar 

  14. A. Adare et al., Phys. Rev. Lett. 107, 252301 (2011)

    Article  ADS  Google Scholar 

  15. Ekaterina Retinskaya, Matthew Luzum, Jean-Yves Ollitrault, Phys. Rev. C 89, 014902 (2014)

    Article  ADS  Google Scholar 

  16. Chun Shen, Zhi Qiu, Ulrich Heinz, Phys. Rev. C 92, 014901 (2015)

    Article  ADS  Google Scholar 

  17. Matthew Luzum, Hannah Petersen, J. Phys. G 41, 063102 (2014)

    Article  ADS  Google Scholar 

  18. Wojciech Broniowski, Piotr Bozek, Maciej Rybczynski, Phys. Rev. C 76, 054905 (2007)

    Article  ADS  Google Scholar 

  19. Hannah Petersen, Jan Steinheimer, Gerhard Burau, Marcus Bleicher, Horst Stocker, Phys. Rev. C 78, 044901 (2008)

    Article  ADS  Google Scholar 

  20. K. Werner, Iu. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov, Phys. Rev. C 82, 044904 (2010)

    Article  ADS  Google Scholar 

  21. Longgang Pang, Qun Wang, Xin-Nian Wang, Phys. Rev. C 86, 024911 (2012)

    Article  ADS  Google Scholar 

  22. Bjoern Schenke, Prithwish Tribedy, Raju Venugopalan, Phys. Rev. Lett. 108, 252301 (2012)

    Article  Google Scholar 

  23. Bjoern Schenke, Prithwish Tribedy, Raju Venugopalan, Phys. Rev. C 86, 034908 (2012)

    Article  Google Scholar 

  24. Charles Gale, Sangyong Jeon, Bjoern Schenke, Prithwish Tribedy, Raju Venugopalan, Phys. Rev. Lett. 110, 012302 (2013)

    Article  ADS  Google Scholar 

  25. Guo-Liang Ma, Xin-Nian Wang, Phys. Rev. Lett. 106, 162301 (2011)

    Article  ADS  Google Scholar 

  26. K. Aamodt et al., Phys. Lett. B 708, 249 (2012)

    Article  ADS  Google Scholar 

  27. Ulrich Heinz, Zhi Qiu, Chun Shen, Phys. Rev. C 87, 034913 (2013)

    Article  ADS  Google Scholar 

  28. Fernando G. Gardim, Frederique Grassi, Matthew Luzum, Jean-Yves Ollitrault, Phys. Rev. C 87, 031901 (2013)

    Article  ADS  Google Scholar 

  29. Zhi Qiu, Ulrich Heinz, Phys. Lett. B 717, 261 (2012)

    Article  ADS  Google Scholar 

  30. Zhi Qiu. Event-by-event Hydrodynamic Simulations for Relativistic Heavy-ion Collisions, PhD Thesis, Ohio State University, 2013

  31. Hannah Petersen, Vivek Bhattacharya, Steffen A. Bass, Carsten Greiner, Phys. Rev. C 84, 054908 (2011)

    Article  ADS  Google Scholar 

  32. Yun Cheng, Yu-Liang Yan, Dai-Mei Zhou, Xu Cai, Ben-Hao Sa, Laszlo P. Csernai, Phys. Rev. C 84, 034911 (2011)

    Article  ADS  Google Scholar 

  33. Kai Xiao, Feng Liu, Fuqiang Wang, Phys. Rev. C 87, 011901 (2013)

    Article  ADS  Google Scholar 

  34. Long-Gang Pang, Guang-You Qin, Victor Roy, Xin-Nian Wang, Guo-Liang Ma, Phys. Rev. C 91, 044904 (2015)

    Article  ADS  Google Scholar 

  35. A. Adil, M. Gyulassy, T. Hirano, Phys. Rev. D 73, 074006 (2006)

    Article  ADS  Google Scholar 

  36. A. Adil, M. Gyulassy, Phys. Rev. C 72, 034907 (2005)

    Article  ADS  Google Scholar 

  37. Piotr Bozek, Wojciech Broniowski, Joao Moreira, Phys. Rev. C 83, 034911 (2011)

    Article  ADS  Google Scholar 

  38. Adrian Dumitru, Jamal Jalilian-Marian, Tuomas Lappi, Bjoern Schenke, Raju Venugopalan, Phys. Lett. B 706, 219 (2011)

    Article  ADS  Google Scholar 

  39. N. Borghini, P.M. Dinh, J.Y. Ollitrault, Nucl. Phys. A 715, 629 (2003)

    Article  ADS  Google Scholar 

  40. Adam Bzdak, Derek Teaney, Phys. Rev. C 87, 024906 (2013)

    Article  ADS  Google Scholar 

  41. The ATLAS Collaboration, Measurement of two-particle pseudorapidity correlations in lead-lead collisions at $\sqrt{s_{NN}}=2.76$TeV with the ATLAS detector, ATLAS-CONF-2015-020 (2015)

  42. Akihiko Monnai, Bjoern Schenke, Pseudorapidity correlations in heavy ion collisions from viscous fluid dynamics, arXiv:1509.04103 (2015)

  43. Piotr Bozek, Wojciech Broniowski, Adam Olszewski, Two-particle correlations in pseudorapidity in a hydrodynamic model, arXiv:1509.04124 (2015)

  44. Peng Huo, Jiangyong Jia, Soumya Mohapatra, Phys. Rev. C 90, 024910 (2014)

    Article  ADS  Google Scholar 

  45. Jiangyong Jia, Peng Huo, Phys. Rev. C 90, 034915 (2014)

    Article  ADS  Google Scholar 

  46. L.P. Csernai, H. Stcker, J. Phys. G 41, 124001 (2014)

    Article  ADS  Google Scholar 

  47. Vardan Khachatryan et al., Phys. Rev. C 92, 034911 (2015)

    Article  ADS  Google Scholar 

  48. Long-Gang Pang, Yoshitaka Hatta, Xin-Nian Wang, Bo-Wen Xiao, Phys. Rev. D 91, 074027 (2015)

    Article  ADS  Google Scholar 

  49. Zi-Wei Lin, Che Ming Ko, Bao-An Li, Bin Zhang, Subrata Pal, Phys. Rev. C 72, 064901 (2005)

    Article  ADS  Google Scholar 

  50. Yun Cheng, L.P. Csernai, V.K. Magas, B.R. Schlei, D. Strottman, Phys. Rev. C 81, 064910 (2010)

    Article  ADS  Google Scholar 

  51. Pasi Huovinen, Pter Petreczky, Nucl. Phys. A 837, 26 (2010)

    Article  Google Scholar 

  52. Xin-Nian Wang, Miklos Gyulassy, Phys. Rev. D 44, 3501 (1991)

    Article  ADS  Google Scholar 

  53. Piotr Bozek, Wojciech Broniowski, The torque effect and fluctuations of entropy deposition in rapidity in ultra-relativistic nuclear collisions, arXiv:1506.02817 (2015)

  54. Ehab Abbas et al., Phys. Lett. B 726, 610 (2013)

    Article  ADS  Google Scholar 

  55. Georges Aad et al., Phys. Lett. B 707, 330 (2012)

    Article  ADS  Google Scholar 

  56. Wei Li, Longitudinal decorrelations of flow orientation angle in AA and pA, invited talk at the INT Workshop 2015, Seattle, July 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Gang Pang.

Additional information

Communicated by T.S. Bıró

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, LG., Petersen, H., Qin, GY. et al. Decorrelation of anisotropic flow along the longitudinal direction. Eur. Phys. J. A 52, 97 (2016). https://doi.org/10.1140/epja/i2016-16097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16097-x

Keywords

Navigation