Advertisement

Neutrino emissivity in the quark-hadron mixed phase of neutron stars

  • William M. Spinella
  • Fridolin WeberEmail author
  • Gustavo A. Contrera
  • Milva G. Orsaria
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Exotic Matter in Neutron Stars

Abstract.

Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ( \( \lesssim10^9\) K) and quark fractions ( \( \lesssim 30\%\) , and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.

Keywords

Neutron Star Mixed Phase Quark Matter Hadronic Matter Hadronic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Haensel, A.Y. Potekhin, D.G. Yakovlev, NEUTRON STARS 1: Equation of State and Structure (Springer, New York, 2007)Google Scholar
  2. 2.
    F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    N.K. Glendenning, Phys. Rep. 342, 393 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    N.K. Glendenning, Phys. Rev. D 46, 1274 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    E. Flowers, Astrophys. J. 180, 911 (1973)ADSCrossRefGoogle Scholar
  6. 6.
    N. Itoh, Y. Kohyama, Astrophys. J. 275, 858 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    N. Itoh, N. Matsumoto, M. Seki, Y. Kohyama, Astrophys. J. 279, 413 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    N. Itoh, Y. Kohyama, N. Matsumoto, M. Seki, Astrophys. J. 280, 787 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    N. Itoh, Y. Kohyama, N. Matsumoto, M. Seki, Astrophys. J. 285, 304 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    C.J. Pethick, V. Thorsson, Phys. Rev. D 56, 7548 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    A.D. Kaminker, C.J. Pethick, A.Y. Potekhin, V. Thorsson, D.G. Yakovlev, Astron. Astrophys. 343, 1009 (1999)ADSGoogle Scholar
  12. 12.
    X. Na, R. Xu, F. Weber, R. Negreiros, Phys. Rev. D 86, 123016 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics, in Studies in High Energy Physics, Cosmology, and Gravitation (IoP Publishing, Bristol, 1999)Google Scholar
  14. 14.
    G. Baym, C.J. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)ADSCrossRefGoogle Scholar
  15. 15.
    G. Baym, H.A. Bethe, C.J. Pethick, Nucl. Phys. A 175, 225 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    J.D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    N.K. Glendenning, Astrophys. J. 293, 470 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, 2nd edition (Springer-Verlag, New York, 2000)Google Scholar
  19. 19.
    J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Boguta, J. Rafelski, Phys. Lett. B 71, 22 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    J. Boguta, H. Stöcker, Phys. Lett. B 120, 289 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    M. Orsaria, H. Rodrigues, F. Weber, G.A. Contrera, Phys. Rev. D 87, 023001 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    M. Orsaria, H. Rodrigues, F. Weber, G.A. Contrera, Phys. Rev. C 89, 015806 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    T. Miyatsu, M. Cheoun, K. Saito, Phys. Rev. C 88, 015802 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    T.A. Rijken, M.M. Nagels, Y. Yamamoto, Prog. Theor. Phys. Suppl. 185, 14 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    P. Rehberg, S.P. Klevansky, J. Hufner, Phys. Rev. C 53, 410 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    N. Yasutake, R. Lastowiecki, S. Benic, D. Blaschke, T. Maruyama, T. Tatsumi, Phys. Rev. C 89, 065803 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    L.F. Palhares, E.S. Fraga, Phys. Rev. D 82, 125018 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    M.B. Pinto, V. Koch, J. Randrup, Phys. Rev. C 86, 025203 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    B.W. Mintz, R. Stiele, R.O. Ramos, J. Schaffner-Bielich, Phys. Rev. D 87, 036004 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    D.A. Baiko, D.G. Yakovlev, Astron. Lett. 21, 702 (1995)ADSGoogle Scholar
  32. 32.
    N. Itoh, Y. Kohyama, Astrophys. J. 275, 858 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    P. Haensel, A.D. Kaminker, D.G. Yakovlev, Astron. Astrophys. 314, 328 (1996)ADSGoogle Scholar
  34. 34.
    D.A. Baiko, A.D. Kaminker, A.Y. Potekhin, D.G. Yakovlev, Phys. Rev. Lett. 81, 5556 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    J.M Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972)Google Scholar
  36. 36.
    M.E. Raikh, D.G. Yakovlev, Astrophys. Space Sci. 87, 193 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    R. Mochkovitch, J.P. Hansen, Phys. Lett. A 73, 35 (1979)ADSCrossRefGoogle Scholar
  38. 38.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  39. 39.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)ADSCrossRefGoogle Scholar
  40. 40.
    P.B. Demorest, T. Pennucci, S.M. Ranson, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    R.S. Lynch et al., Astrophys. J. 763, 81 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    J. Antoniadis et al., Science 340, 6131 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    N. Iwamoto, Ann. Phys. 141, 1 (1982)ADSCrossRefGoogle Scholar
  44. 44.
    P. Braun-Munzinger, J. Wambach, Rev. Mod. Phys. 81, 1031 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    B. Friman, C. Höhne, J. Knoll, S. Leupold, R. Randrup, J. Rapp, P. Senger (Editors), Lecture Notes in Physics, Vol. 814 (Springer, 2011) p. 960Google Scholar
  46. 46.
  47. 47.
    W. Becker (Editor), Neutron Stars and Pulsars, in Astrophysics and Space Science Library, Vol. 357 (Springer, 2009) p. 697Google Scholar
  48. 48.
    J. van Leeuwen (Editor), Neutron Stars and Pulsars: Challenges and Opportunities after 80 years, IAU Symposium No. 291, (Cambridge University Press, 2013) p. 592Google Scholar
  49. 49.
    M. Buballa et al., J. Phys. G: Nucl. Part. Phys. 41, 123001 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    C. Fuchs, H. Lenske, H.H. Wolter, Phys. Rev. C 52, 3043 (1995)ADSCrossRefGoogle Scholar
  53. 53.
    S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 025804 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    C.-Y. Ryu, C.H. Hyun, C.-H. Lee, Phys. Rev. C 84, 035809 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    G. Colucci, A. Sedrakian, Phys. Rev. C 87, 055806 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    E.N.E. van Dalen, G. Colucci, A. Sedrakian, Phys. Lett. B 734, 383 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    M. Oertel, C. Providencia, F. Gulminelli, Ad.R. Raduta, J. Phys. G 42, 075202 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    S. Benic, D. Blaschke, D.E. Alvarez-Castillo, T. Fischer, S. Typel, Astron. Astrophys. 577, A40 (2015)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • William M. Spinella
    • 1
    • 2
  • Fridolin Weber
    • 2
    • 3
    Email author
  • Gustavo A. Contrera
    • 4
    • 5
    • 6
  • Milva G. Orsaria
    • 4
    • 6
  1. 1.Computational Science Research Center San Diego State UniversitySan DiegoUSA
  2. 2.Department of PhysicsSan Diego State UniversitySan DiegoUSA
  3. 3.Center for Astrophysics and Space SciencesUniversity of California San DiegoLa JollaUSA
  4. 4.CONICETBuenos AiresArgentina
  5. 5.IFLPCONICET - Dpto. de Fısica, UNLPLa PlataArgentina
  6. 6.Grupo de Gravitación, Astrofısica y Cosmologıa, Facultad de Ciencias Astronómicas y GeofısicasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations