Advertisement

Trojan Horse measurement of the 18F(p,\(\alpha\))15O astrophysical S(E)-factor

  • R. G. Pizzone
  • B. T. Roeder
  • M. McCleskey
  • L. Trache
  • R. E. Tribble
  • C. Spitaleri
  • C. A. Bertulani
  • S. Cherubini
  • M. Gulino
  • I. Indelicato
  • M. La Cognata
  • L. Lamia
  • G. G. Rapisarda
  • R. Spartá
Regular Article - Experimental Physics

Abstract.

Crucial information on novae nucleosynthesis is linked to the abundance of 18F , which, due to great improvements in gamma-ray astronomy, can be detected in explosive environments. Therefore, the reaction network producing and destroying this radioactive isotope has been extensively studied in the last years. Among those reactions, the 18F(p,\(\alpha\))15O cross section has been measured by means of several dedicated experiments, both using direct and indirect methods. The presence of resonances in the energy region of astrophysical interest has been reported by many authors. In the present work a report on a recent experiment performed via the Trojan Horse Method (THM) is presented and the results are given and compared with the ones known in the literature, both direct and indirect. Data arising from THM measurements are then averaged and the reaction rate calculated in the novae energy range.

Keywords

Momentum Distribution Coulomb Barrier Astrophysical Interest Plane Wave Impulse Approximation Trojan Horse Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Jose, M. Hernanz, J. Phys. G: Nucl. Part. Phys. 34, R431 (2007)CrossRefADSGoogle Scholar
  2. 2.
    A. Coc, M. Hernanz, J. Jose, J.P. Thibaud, Astron. Astrophys. 357, 561 (2000)ADSGoogle Scholar
  3. 3.
    R. Diehl, AIP Conf. Proc. 1269, 144 (2010)CrossRefADSGoogle Scholar
  4. 4.
    C. Iliadis, Nuclear Physics of Stars (Wiley, 2007)Google Scholar
  5. 5.
    D.W. Bardayan, J.C. Batchelder, J.C. Blackmon, A.E. Champagne et al., Phys. Rev. Lett. 89, 262501 (2002)CrossRefADSGoogle Scholar
  6. 6.
    C.E. Beer, A.M. Laird, A.St.J. Murphy, M.A. Bentley et al., Phys. Rev. C 83, 042801(R) (2011)CrossRefADSGoogle Scholar
  7. 7.
    N. DeSereville, C. Angulo, A. Coc, N.L. Achouri et al., Phys. Rev. C 79, 015801 (2009)CrossRefADSGoogle Scholar
  8. 8.
    J.S. Graulich, S. Cherubini, R. Coszach, S. El Hajjami et al., Nucl. Phys. A 688, 138C (2001)CrossRefADSGoogle Scholar
  9. 9.
    J.S. Graulich, S. Cherubini, R. Coszach, El Hajjami et al., Phys. Rev. C 63, 011302(R) (2000)CrossRefADSGoogle Scholar
  10. 10.
    A. Laird, A. Parikh, A.St.J. Murphy, K. Wimmer et al., Phys. Rev. Lett. 110, 032502 (2013)CrossRefADSGoogle Scholar
  11. 11.
    Murphy et al., Phys. Rev. C 79, 058801 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Adekola et al., Phys. Rev. C 83, 052801 (2011)CrossRefADSGoogle Scholar
  13. 13.
    Adekola et al., Phys. Rev. C 84, 054611 (2011)CrossRefADSGoogle Scholar
  14. 14.
    Mountford et al., Phys. Rev. C 85, 022801(R) (2012)CrossRefADSGoogle Scholar
  15. 15.
    G. Baur, C.A. Bertulani, H. Rebel, Nucl. Phys. A 458, 188 (1986)CrossRefADSGoogle Scholar
  16. 16.
    C. Spitaleri, Prob. Fund. Phys. II, 21 (1991)Google Scholar
  17. 17.
    C. Spitaleri, S. Typel, R.G. Pizzone, M.L. Aliotta et al., Phys. Rev. C 63, 055801 (2001)CrossRefADSGoogle Scholar
  18. 18.
    C. Spitaleri, A.M. Mukhamedzhanov, L.D. Blokhintsev, M. La Cognata et al., Phys. At. Nucl. 74, 1725 (2011)CrossRefGoogle Scholar
  19. 19.
    R.E. Tribble et al., Rep. Progr. Phys. 77, 106901 (2014)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    R.G. Pizzone, R. Sparta, C.A. Bertulani, C. Spitaleri et al., Astrophys. J. 786, 112 (2014)CrossRefADSGoogle Scholar
  21. 21.
    A. Rinollo et al., Nucl. Phys. A 758, 146c (2005)CrossRefADSGoogle Scholar
  22. 22.
    R.G. Pizzone, A. Tumino, S. Degl’Innocenti, C. Spitaleri et al., Astron. Astrophys. 438, 779 (2005)CrossRefADSGoogle Scholar
  23. 23.
    L. Lamia et al., Astron. Astrophys. 541, 158 (2012)CrossRefADSGoogle Scholar
  24. 24.
    S. Palmerini, M.L. Sergi, M. La Cognata, L. Lamia et al., Astrophys. J. 764, 128 (2013)CrossRefADSGoogle Scholar
  25. 25.
    S. Romano et al., Eur. Phys. J. A 27, 221 (2006)CrossRefADSGoogle Scholar
  26. 26.
    R.G. Pizzone, C. Spitaleri, L. Lamia, C. Bertulani et al., Phys. Rev. C 83, 045801 (2011)CrossRefADSGoogle Scholar
  27. 27.
    M. Lattuada, R.G. Pizzone, S. Typel, P. Figuera et al., Astrophys. J. 562, 1076 (2001)CrossRefADSGoogle Scholar
  28. 28.
    C. Spitaleri, L. Lamia, S.M.R. Puglia, S. Romano et al., Phys. Rev. C 90, 035801 (2014)CrossRefADSGoogle Scholar
  29. 29.
    R.G. Pizzone et al., Phys. Rev. C 87, 025805 (2013)CrossRefADSGoogle Scholar
  30. 30.
    A. Tumino et al., Phys. Lett. B 700, 111 (2011)CrossRefADSGoogle Scholar
  31. 31.
    A. Tumino et al., Phys. Rev. C 78, 064001 (2008)CrossRefADSGoogle Scholar
  32. 32.
    S. Cherubini, M. Gulino, C. Spitaleri, M. La Cognata et al., Phys. Rev. C 92, 015805 (2015)CrossRefADSGoogle Scholar
  33. 33.
    L. Lamia, M. La Cognata, C. Spitaleri, B. Irgaziev, R.G. Pizzone, Phys. Rev. C 85, 025805 (2012)CrossRefADSGoogle Scholar
  34. 34.
    R.E. Tribble, R.H. Burch, C.A. Gagliardi, Nucl. Instrum. Methods A 285, 441 (1989)CrossRefADSGoogle Scholar
  35. 35.
    R.E. Tribble, C.A. Gagliardi, W. Liu, Nucl. Instrum. Methods B 56/57, 956 (1991)CrossRefADSGoogle Scholar
  36. 36.
    B.T. Roeder, M. McCleskey, L. Trache, A.A. Alharbi et al., Nucl. Instrum. Methods A 634, 71 (2011)CrossRefADSGoogle Scholar
  37. 37.
    R.G. Pizzone, C. Spitaleri, S. Cherubini, M. La Cognata et al., Phys. Rev. C 71, 058801 (2005)CrossRefADSGoogle Scholar
  38. 38.
    R.G. Pizzone, C. Spitaleri, A.M. Mukhamedzhanov, L.D. Blokhintsev et al., Phys. Rev. C 80, 025807 (2009)CrossRefADSGoogle Scholar
  39. 39.
    M. Zadro, D. Miljanic, C. Spitaleri, G. Calvi et al., Phys. Rev. C 40, 181 (1989)CrossRefADSGoogle Scholar
  40. 40.
    C.D. Nesaraja, N. Shu, D.W. Bardayan, J.C. Blackmon et al., Phys. Rev. C 75, 055809 (2007)CrossRefADSGoogle Scholar
  41. 41.
    D.R. Tilley, H.R. Weller, C.M. Cheves, R.M. Chasteler, Nucl. Phys. A 595, 1 (1995)CrossRefADSGoogle Scholar
  42. 42.
    M. Wiescher, K. Kettner, Astrophys. J. 263, 891 (1982)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. G. Pizzone
    • 1
    • 2
  • B. T. Roeder
    • 1
  • M. McCleskey
    • 1
  • L. Trache
    • 1
    • 3
  • R. E. Tribble
    • 1
    • 4
  • C. Spitaleri
    • 2
    • 5
  • C. A. Bertulani
    • 6
  • S. Cherubini
    • 2
    • 4
  • M. Gulino
    • 2
    • 7
  • I. Indelicato
    • 2
    • 5
  • M. La Cognata
    • 2
  • L. Lamia
    • 5
  • G. G. Rapisarda
    • 2
    • 5
  • R. Spartá
    • 2
    • 5
  1. 1.Cyclotron InstituteTexas A& M UniversityCollege StationUSA
  2. 2.Laboratori Nazionali del SudINFNCataniaItaly
  3. 3.IFIN-HHBucharest-MagureleRomania
  4. 4.Brookhaven National LaboratoryUpton, New YorkUSA
  5. 5.Dipartimento di Fisica e AstronomiaUniversità degli Studi di CataniaCataniaItaly
  6. 6.Department of Physics and AstronomyTexas A&M University-CommerceCommerceUSA
  7. 7.KORE UniversityEnnaItaly

Personalised recommendations