Fission modelling with FIFRELIN

Abstract.

The nuclear fission process gives rise to the formation of fission fragments and emission of particles \( (n,\gamma , e^{-})\) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the scission neutrons. Several efforts have already been made to replace macroscopic ingredients and phenomenology by microscopic ingredients provided in various nuclear parameter libraries such as electric dipole photon strength functions or HFB level densities. First results relative to theses aspects are presented in this work.

This is a preview of subscription content, log in to check access.

References

  1. 1

    V.F. Weisskopf, Phys. Rev. 52, 295 (1937)

    ADS  Article  Google Scholar 

  2. 2

    S. Lemaire, P. Talou, T. Kawano, M.B. Chadwick, D.G. Madland, Phys. Rev. C 72, 024601 (2005)

    ADS  Article  Google Scholar 

  3. 3

    S. Lemaire, P. Talou, T. Kawano, M.B. Chadwick, D.G. Madland, Phys. Rev. C 73, 014602 (2006)

    ADS  Article  Google Scholar 

  4. 4

    J. Randrup, R. Vogt, Phys. Rev. C 80, 024601 (2009)

    ADS  Article  Google Scholar 

  5. 5

    K.-H. Schmidt, B. Jurado, Phys. Rev. Lett. 104, 212501 (2010)

    ADS  Article  Google Scholar 

  6. 6

    O. Litaize, O. Serot, Phys. Rev. C 82, 054616 (2010)

    ADS  Article  Google Scholar 

  7. 7

    K.-H. Schmidt, B. Jurado, Phys. Rev. C 83, 061601 (2011)

    ADS  Article  Google Scholar 

  8. 8

    P. Talou, B. Becker, T. Kawano, M.B. Chadwick, Y. Danon, Phys. Rev. C 83, 064612 (2011)

    ADS  Article  Google Scholar 

  9. 9

    R. Vogt, J. Randrup, D.A. Brown, M.A. Descalle, W.E. Ormand, Phys. Rev. C 85, 024608 (2012)

    ADS  Article  Google Scholar 

  10. 10

    D. Regnier, O. Litaize, O. Serot, Phys. Proc. 31, 59 (2012)

    ADS  Article  Google Scholar 

  11. 11

    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    ADS  Article  Google Scholar 

  12. 12

    B. Becker, P. Talou, T. Kawano, Y. Danon, I. Stetcu, Phys. Rev. C 87, 014617 (2013)

    ADS  Article  Google Scholar 

  13. 13

    D. Regnier, O. Litaize, O. Serot, Phys. Proc. 47, 47 (2013)

    ADS  Article  Google Scholar 

  14. 14

    U. Brosa, S. Grossmann, A. Muller, Phys. Rep. 197, 167 (1990)

    ADS  Article  Google Scholar 

  15. 15

    N. Varapai, F.-J. Hambsch, S. Oberstedt, O. Serot, G. Barreau, N. Kornilov, S. Zeinalov, in Proceedings of the International Workshop on Nuclear Fission and Fission Product Spectroscopy, edited by G. Fioni, Vol. 447 (Cadarache, France, 2005) p. 369

  16. 16

    F.-J. Hambsch, H.-H. Knitter, C. Budtz-Jorgensen, J.-P. Theobald, Nucl. Phys. A 491, 56 (1989)

    ADS  Article  Google Scholar 

  17. 17

    C. Wagemans, E. Allaert, A. Deruytter, R. Barthélémy, P. Schillebeeckx, Phys. Rev. C 30, 218 (1984)

    ADS  Article  Google Scholar 

  18. 18

    L. Demattè, PhD Thesis, University of Gent, Belgium (1997)

  19. 19

    A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)

    ADS  Article  Google Scholar 

  20. 20

    J.P. Bocquet, R. Brissot, Nucl. Phys. A 502, 213c (1989)

    ADS  Article  Google Scholar 

  21. 21

    H. Naik, S.P. Dange, R.J. Singh, S.B. Manohar, Nucl. Phys. A 612, 143 (1997)

    ADS  Article  Google Scholar 

  22. 22

    H. Naik, R.J. Singh, R.H. Iyer, J. Phys. G: Nucl. Part. Phys. 30, 107 (2004)

    ADS  Article  Google Scholar 

  23. 23

    O. Litaize, O. Serot, D. Regnier, S. Theveny, S. Onde, Phys. Proc. 31, 51 (2012)

    ADS  Article  Google Scholar 

  24. 24

    F. Gönnenwein, in Proceedings of Seminar on Fission, edited by C. Wagemans, Vol. 3 (Corsendonk Priory, Belgium, 2007)

  25. 25

    S. Hilaire, M. Girod, Eur. Phys. J. A 33, 237 (2007)

    ADS  Article  Google Scholar 

  26. 26

    A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003)

    ADS  Article  Google Scholar 

  27. 27

    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    ADS  Article  Google Scholar 

  28. 28

    A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    ADS  Article  Google Scholar 

  29. 29

    W.D. Myers, W.J. Swiatecki, Nucl. Phys. A 601, 141 (1996)

    ADS  Article  Google Scholar 

  30. 30

    P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)

    ADS  Article  Google Scholar 

  31. 31

    F. Becvar, Nucl. Instrum. Methods Phys. Res. A 417, 434 (1998)

    ADS  Article  Google Scholar 

  32. 32

    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)

    ADS  Article  Google Scholar 

  33. 33

    D. Regnier, O. Litaize, O. Serot, to be published in Comput. Phys. Commun

  34. 34

    A.J. Koning, Proceedings of the International Conference on Nuclear Data for Science and Technology - ND2007, edited by O. Bersillon (Nice, France, 2007) p. 211

  35. 35

    Q. Ducasse, private communication

  36. 36

    E. Khan et al., Nucl. Phys. A 694, 103 (2001)

    ADS  Article  Google Scholar 

  37. 37

    S. Goriely, E. Khan, Nucl. Phys. A 706, 217 (2002)

    ADS  Article  Google Scholar 

  38. 38

    D. Regnier, PhD Thesis, University of Grenoble, France (2013)

  39. 39

    C. Wagemans, The Nuclear Fission Process (CRC Press, 1991) p. 480

  40. 40

    A.S. Vorobyev, V.N. Dushin, F.-J. Hambsch, V.A. Jakolev, V.A. Kalinin, A.B. Laptev, B.F. Petrov, O.A. Shcherbakov, in Proceedings of the International Conference on Nuclear Data for Science and Technology ND2004, edited by R.C. Haight (Santa Fe, USA, 2004) p. 613

  41. 41

    K. Nishio, Y. Nakagome, H. Yamamoto, I. Kimura, Nucl. Phys. A 632, 540 (1998)

    ADS  Article  Google Scholar 

  42. 42

    C. Budtz-Jørgensen, H.H. Knitter, Nucl. Phys. A 490, 307 (1988)

    ADS  Article  Google Scholar 

  43. 43

    R.L. Walsh, J.W. Boldeman, Nucl. Phys. A 276, 189 (1977)

    ADS  Article  Google Scholar 

  44. 44

    F.-J. Hambsch, private communication

  45. 45

    E.E. Maslin, A.L. Rodgers, W.G.F. Core, Phys. Rev. 164, 1920 (1967)

    ADS  Article  Google Scholar 

  46. 46

    O.A. Batenkov et al., AIP Conf. Proc. 769, 1003 (2005)

    ADS  Article  Google Scholar 

  47. 47

    A. Vorobyev, O. Shcherbakov, A. Gagarski, G. Valaski, G. Petrov, EPJ Web of Conferences 8, 03004 (2010)

    Article  Google Scholar 

  48. 48

    W. Mannhart, in Properties of Neutron Sources, Report IAEA-TECDOC-410 (1987) p. 158

  49. 49

    N. Kornilov, F.-J. Hambsch, I. Fabry, S. Oberstedt, T. Belgya, Z. Kis, L. Szentmiklosi, S. Simakov, Nucl. Sci. Eng. 165, 117 (2010)

    Article  Google Scholar 

  50. 50

    B.I. Starostov, V.N. Nefedov, A.A. Boytzov, Proccedings of the All Union Conference on Neutron Physics, Vol. 2 (Kiev, USSR, 1983) p. 290

  51. 51

    V.N. Nefedov, B.I. Starostov, A.A. Boytzov, Proccedings of the All Union Conference on Neutron Physics, Vol. 2 (Kiev, USSR, 1983) p. 285

  52. 52

    A. Lajtai, J. Kecskemeti, J. Safar, P.P. Dyachenko, V.M. Piksaikin, Proccedings of the Conference on Nuclear Data for Basic and Applied Sciences, Vol. 1 (Santa Fe, USA, 1985) p. 613

  53. 53

    J. Terrell, Phys. Rev. 113, 527 (1959)

    ADS  MathSciNet  Article  Google Scholar 

  54. 54

    D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)

    ADS  Article  Google Scholar 

  55. 55

    A. Mastsumoto, H. Taninaka, K. Hashimoto, T. Ohsawa, J. Nucl. Sci. Technol. 49, 782 (2012)

    Article  Google Scholar 

  56. 56

    T. Ohsawa, in IAEA Report INDC(NDS)-0541 (2009) p. 71

  57. 57

    H. Märten, A. Ruben, Sov. At. Ener. 69, 583 (1990)

    Article  Google Scholar 

  58. 58

    T.N. Taddeucci et al., Nucl. Data Sheets 123, 135 (2015)

    ADS  Article  Google Scholar 

  59. 59

    P. Glässel, R. Schmid-Fabian, D. Schwalm, D. Habs, H.U.V. Helmolt, Nucl. Phys. A 502, 315c (1989)

    ADS  Article  Google Scholar 

  60. 60

    F. Pleasonton, R.L. Ferguson, H.W. Schmitt, Phys. Rev. C 6, 1023 (1972)

    ADS  Article  Google Scholar 

  61. 61

    O. Serot, O. Litaize, D. Regnier, Phys. Proc. 59, 132 (2014)

    ADS  Article  Google Scholar 

  62. 62

    I. Stetcu, P. Talou, T. Kawano, M. Jandel, Phys. Rev. C 90, 024617 (2014)

    ADS  Article  Google Scholar 

  63. 63

    L. Thulliez, private communication (2015)

  64. 64

    R. Billnert, F.-J. Hambsch, A. Oberstedt, S. Oberstedt, Phys. Rev. C 87, 024601 (2013)

    ADS  Article  Google Scholar 

  65. 65

    V.V. Verbinski, H. Weber, R.E. Sund, Phys. Rev. C 7, 1173 (1973)

    ADS  Article  Google Scholar 

  66. 66

    A. Chyzh, C.Y. Wu, E. Kwan, R.A. Henderson, J.M. Gostic, T.A. Bredeweg, R.C. Haight, A.C. Hayes-Sterbenz, M. Jandel, J.M. O’Donnell, J.L. Ullmann, Phys. Rev. C 85, 0216011 (2012)

    Article  Google Scholar 

  67. 67

    R.W. Peelle, F.C. Maienschein, Phys. Rev. C 3, 373 (1971)

    ADS  Article  Google Scholar 

  68. 68

    A. Oberstedt, T. Belgya, R. Billnert, R. Borcea, T. Brys, W. Geerts, A. Gook, F.-J. Hambsch, Z. Kis, T. Martinez, S. Oberstedt, L. Szentmiklosi, K. Takacs, M. Vidali, Phys. Rev. C 87, 051602 (2013)

    ADS  Article  Google Scholar 

  69. 69

    R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997)

    ADS  Article  Google Scholar 

  70. 70

    D. Doré, F. Farget, F.-R. Lecolley, G. Lehaut, T. Materna, J. Pancin, S. Panebianco, Th. Papaevangelou, EPJ Web of Conferences 62, 05005 (2013)

    Article  Google Scholar 

  71. 71

    J. Taieb et al., Int. J. Mod. Phys. E 18, 767 (2009)

    ADS  Article  Google Scholar 

  72. 72

    A. Gook, F.-J. Hambsch, M. Vidali, Phys. Rev. C 90, 064611 (2014)

    ADS  Article  Google Scholar 

  73. 73

    R. Billnert, A. Oberstedt, S. Oberstedt, Phys. Proc. 59, 17 (2014)

    ADS  Article  Google Scholar 

  74. 74

    A. Oberstedt, R. Billnert, S. Oberstedt, Phys. Proc. 59, 24 (2014)

    ADS  Article  Google Scholar 

  75. 75

    J.N. Wilson, M. Leblois, P. Halipre, S. Oberstedt, A. Oberstedt, Phys. Proc. 59, 31 (2014)

    ADS  Article  Google Scholar 

  76. 76

    M. Leblois, J.N. Wilson, P. Halipre, B. Leniau, I. Matea, A. Oberstedt, S. Oberstedt, D. Verney, Phys. Proc. 59, 37 (2014)

    ADS  Article  Google Scholar 

  77. 77

    M. Jandel et al., Phys. Proc. 59, 101 (2014)

    ADS  Article  Google Scholar 

  78. 78

    Y. Aritomo, Proceedings of Nuclear Fission and Structure of Exotic Nuclei - ASRC (Tokai, Japan, 2014)

  79. 79

    A.J. Sierk, LANL Report LA-UR-14-27056 (2014)

  80. 80

    A. Blanc, in Proceedings of Symposium on Capture Gamma-Ray Spectroscopy and Related Topics CGC15 (Dresden, Germany, 2014)

  81. 81

    G. Kessedjian, A. Chebboubi, H. Faust, U. Köster, T. Materna, C. Sage, O. Serot, EPJ Web of Conferences 42, 01007 (2013)

    Article  Google Scholar 

  82. 82

    A. Blanc et al., Nucl. Instrum. Methods Phys. Res. B 317, 333 (2013)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olivier Litaize.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Litaize, O., Serot, O. & Berge, L. Fission modelling with FIFRELIN. Eur. Phys. J. A 51, 177 (2015). https://doi.org/10.1140/epja/i2015-15177-9

Download citation

Keywords

  • Level Density
  • Fragment Mass
  • Neutron Emission
  • Gamma Emission
  • Gamma Spectrum