Skip to main content
Log in

The Lamb shift in muonic hydrogen and the proton radius from effective field theories

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We comprehensively analyse the theoretical prediction for the Lamb shift in muonic hydrogen, and the associated determination of the proton radius. We use effective field theories. This allows us to relate the proton radius with well-defined objects in quantum field theory, eliminating unnecessary model dependence. The use of effective field theories also helps us to organize the computation so that we can clearly state the parametric accuracy of the result. In this paper we review all (and check several of) the contributions to the energy shift of order \( \alpha^{5}\), as well as those that scale like \( \alpha^{6} \times\) logarithms in the context of non-relativistic effective field theories of QED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Pohl et al., Nature 466, 213 (2010)

    Article  ADS  Google Scholar 

  2. A. Antognini, F. Nez, K. Schuhmann, F.D. Amaro, F. Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax et al., Science 339, 417 (2013)

    Article  ADS  Google Scholar 

  3. P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 84, 1527 (2012) arXiv:1203.5425 [physics.atom-ph]

    Article  ADS  Google Scholar 

  4. I.T. Lorenz, U.G. Meißner, Phys. Lett. B 737, 57 (2014) arXiv:1406.2962 [hep-ph]

    Article  ADS  Google Scholar 

  5. I.T. Lorenz, U.G. Meißner, H.-W. Hammer, Y.-B. Dong, Phys. Rev. D 91, 014023 (2015) arXiv:1411.1704 [hep-ph]

    Article  ADS  Google Scholar 

  6. C. Peset, A. Pineda, Eur. Phys. J. A 51, 32 (2015) arXiv:1403.3408 [hep-ph]

    Article  ADS  Google Scholar 

  7. A. Pineda, J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998) arXiv:hep-ph/9707481

    Article  ADS  Google Scholar 

  8. A. Pineda, Phys. Rev. C 71, 065205 (2005) arXiv:hep-ph/0412142

    Article  ADS  Google Scholar 

  9. E.E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991)

    Article  ADS  Google Scholar 

  10. W.E. Caswell, G.P. Lepage, Phys. Lett. B 167, 437 (1986)

    Article  ADS  Google Scholar 

  11. C. Peset, A. Pineda, Nucl. Phys. B 887, 69 (2014) arXiv:1406.4524 [hep-ph]

    Article  ADS  Google Scholar 

  12. F. Jegerlehner, Nucl. Phys. Proc. Suppl. 51C, 131 (1996) hep-ph/9606484

    Article  ADS  Google Scholar 

  13. A.V. Manohar, Phys. Rev. D 56, 230 (1997) hep-ph/9701294

    Article  ADS  Google Scholar 

  14. R. Barbieri, M. Caffo, E. Remiddi, Lett. Nuovo Cimento 7, 60 (1973)

    Article  Google Scholar 

  15. R. Barbieri, J.A. Mignaco, E. Remiddi, Nuovo Cimento A 11, 824 (1972)

    Article  ADS  Google Scholar 

  16. Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  17. A. Pineda, Phys. Rev. C 67, 025201 (2003)

    Article  ADS  Google Scholar 

  18. A. Pineda, J. Soto, Phys. Rev. D 58, 114011 (1998) hep-ph/9802365

    Article  ADS  Google Scholar 

  19. D. Nevado, A. Pineda, Phys. Rev. C 77, 035202 (2008) arXiv:0712.1294 [hep-ph]

    Article  ADS  Google Scholar 

  20. J.M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74, 2852 (2014) arXiv:1312.1219 [hep-ph]

    Article  ADS  Google Scholar 

  21. M.C. Birse, J.A. McGovern, Eur. Phys. J. A 48, 120 (2012) arXiv:1206.3030 [hep-ph]

    Article  ADS  Google Scholar 

  22. A. Pineda, J. Soto, Phys. Lett. B 420, 391 (1998) hep-ph/9711292

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Pineda, J. Soto, Phys. Rev. D 59, 016005 (1999) arXiv:hep-ph/9805424

    Article  ADS  Google Scholar 

  24. A.O.G. Kallen, A. Sabry, Kong. Dan. Vid. Sel. Mat. Fys. Med. 29N17, 1 (1955)

    Google Scholar 

  25. T. Kinoshita, W.B. Lindquist, Phys. Rev. D 27, 853 (1983)

    Article  ADS  Google Scholar 

  26. T. Kinoshita, M. Nio, Phys. Rev. Lett. 82, 3240 (1999) 103

    Article  ADS  Google Scholar 

  27. S.G. Karshenboim, E.Y. Korzinin, V.G. Ivanov, V.A. Shelyuto, JETP Lett. 92, 8 (2010) arXiv:1005.4880 [physics.atom-ph]

    Article  ADS  Google Scholar 

  28. A. Pineda, Prog. Part. Nucl. Phys. 67, 735 (2012) arXiv:1111.0165 [hep-ph]

    Article  ADS  Google Scholar 

  29. U.D. Jentschura, Phys. Rev. A 84, 012505 (2011) arXiv:1107.1737 [physics.atom-ph]

    Article  ADS  Google Scholar 

  30. K. Pachucki, Phys. Rev. A 53, 2092 (1996)

    Article  ADS  Google Scholar 

  31. A.H. Hoang, hep-ph/0008102.

  32. U.D. Jentschura, B.J. Wundt, Eur. Phys. J. D 65, 357 (2011) arXiv:1112.0556 [physics.atom-ph]

    Article  ADS  Google Scholar 

  33. V.G. Ivanov, E.Y. Korzinin, S.G. Karshenboim, arXiv:0905.4471 [physics.atom-ph]

  34. A. Veitia, K. Pachucki, Phys. Rev. A 69, 042501 (2004)

    Article  ADS  Google Scholar 

  35. E. Borie, Ann. Phys. 327, 733 (2012)

    Article  ADS  MATH  Google Scholar 

  36. S.G. Karshenboim, V.G. Ivanov, E.Y. Korzinin, Phys. Rev. A 85, 032509 (2012)

    Article  ADS  Google Scholar 

  37. I.B. Khriplovich, A.I. Milstein, A.S. Yelkhovsky, Phys. Scr. V T46, 252 (1993)

    Article  ADS  Google Scholar 

  38. A. Pineda, Phys. Rev. A 66, 062108 (2002) hep-ph/0204213

    Article  ADS  Google Scholar 

  39. E.Y. Korzinin, V.G. Ivanov, S.G. Karshenboim, Phys. Rev. D 88, 125019 (2013) arXiv:1311.5784 [physics.atom-ph]

    Article  ADS  Google Scholar 

  40. J.L. Friar, Ann. Phys. 122, 151 (1979)

    Article  ADS  Google Scholar 

  41. A. Antognini, F. Kottmann, F. Biraben, P. Indelicato, F. Nez, R. Pohl, Ann. Phys. 331, 127 (2013) arXiv:1208.2637 [physics.atom-ph]

    Article  ADS  MATH  Google Scholar 

  42. S.N. Gupta, W.W. Repko, C.J. Suchyta III, Phys. Rev. D 40, 4100 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Peset.

Additional information

Communicated by U.-G. Meißner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peset, C., Pineda, A. The Lamb shift in muonic hydrogen and the proton radius from effective field theories. Eur. Phys. J. A 51, 156 (2015). https://doi.org/10.1140/epja/i2015-15156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15156-2

Keywords

Navigation