Shear viscosities from Kubo formalism in a large-Nc Nambu-Jona-Lasinio model

Regular Article - Theoretical Physics

Abstract

In this work the shear viscosity of strongly interacting matter is calculated within a two-flavor Nambu-Jona-Lasinio model as a function of temperature and chemical potential. The general Kubo formula is applied, incorporating the full Dirac structure of the thermal quark spectral function and avoiding commonly used on-shell approximations. Mesonic fluctuations contributing via Fock diagrams provide the dominant dissipative processes. The resulting ratio η/s (shear viscosity over entropy density) decreases with temperature and chemical potential. Interpolating between our NJL results at low temperatures and hard thermal loop results at high temperatures a minimum slightly above the AdS/CFT benchmark η/s = 1/4τ is obtained.

References

  1. 1.
    K. Dusling, D. Teaney, Phys. Rev. C 77, 034905 (2008).CrossRefADSGoogle Scholar
  2. 2.
    M. Luzum, C. Gombeaud, J.Y. Ollitrault, Phys. Rev. C 81, 054910 (2010).CrossRefADSGoogle Scholar
  3. 3.
    H. Song, Nucl. Phys. A 904-905, 114c (2013).CrossRefADSGoogle Scholar
  4. 4.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).CrossRefADSGoogle Scholar
  5. 5.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).CrossRefADSGoogle Scholar
  6. 6.
    U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).CrossRefADSGoogle Scholar
  7. 7.
    S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994).CrossRefADSGoogle Scholar
  9. 9.
    S. Klimt, M. Lutz, U. Vogl, W. Weise, Nucl. Phys. A 516, 429 (1990).CrossRefADSGoogle Scholar
  10. 10.
    S. Klimt, M. Lutz, U. Vogl, W. Weise, Nucl. Phys. A 516, 469 (1990).CrossRefADSGoogle Scholar
  11. 11.
    M. Buballa, Phys. Rep. 407, 205 (2005).CrossRefADSGoogle Scholar
  12. 12.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    W.M. Alberico, S. Chiacchiera, H. Hansen, A. Molinari, M. Nardi, Eur. Phys. J. A 38, 97 (2008).CrossRefADSGoogle Scholar
  14. 14.
    Y. Hidaka, T. Kunihiro, Phys. Rev. D 83, 076004 (2011).CrossRefADSGoogle Scholar
  15. 15.
    Y. Hidaka, T. Kunihiro, J. Phys. Conf. Ser. 270, 012050 (2011).CrossRefADSGoogle Scholar
  16. 16.
    S.-I. Nam, C.-W. Kao, Phys. Rev. D 87, 114003 (2013).CrossRefADSGoogle Scholar
  17. 17.
    S. Ghosh, A. Lahiri, S. Majumder, R. Ray, S.K. Ghosh, Phys. Rev. C 88, 068201 (2013).CrossRefADSGoogle Scholar
  18. 18.
    S. Ghosh, G. Krein, S. Sarkar, Phys. Rev. C 89, 045201 (2014).CrossRefADSGoogle Scholar
  19. 19.
    S. Ghosh, Phys. Rev. C 90, 025202 (2014).CrossRefADSGoogle Scholar
  20. 20.
    N. Christiansen, M. Haas, J.M. Pawlowski, N. Strodthoff, arXiv:1411.7986 hep-ph.
  21. 21.
    M. Iwasaki, H. Ohnishi, T. Fukutome, arXiv:hep-ph/0606192 (2006).
  22. 22.
    T. Fukutome, M. Iwasaki, Prog. Theor. Phys. 119, 991 (2008).CrossRefADSMATHGoogle Scholar
  23. 23.
    M. Iwasaki, H. Ohnishi, T. Fukutome, arXiv:hep-ph/0703271 (2007).
  24. 24.
    R. Lang, W. Weise, Eur. Phys. J. A 50, 63 (2014).CrossRefADSGoogle Scholar
  25. 25.
    D. Müller, M. Buballa, J. Wambach, Phys. Rev. D 81, 094022 (2010).CrossRefADSGoogle Scholar
  26. 26.
    E. Quack, S.P. Klevansky, Phys. Rev. C 49, 3283 (1994).CrossRefADSGoogle Scholar
  27. 27.
    K. Heckmann, M. Buballa, J. Wambach, Eur. Phys. J. A 48, 142 (2012).CrossRefADSGoogle Scholar
  28. 28.
    T. Hatsuda, T. Kunihiro, Prog. Theor. Phys. Suppl. 91, 284 (1987).CrossRefADSGoogle Scholar
  29. 29.
    J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005).CrossRefADSGoogle Scholar
  31. 31.
    T.D. Cohen, Phys. Rev. Lett. 99, 021602 (2007).MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    A. Rebhan, D. Steineder, Phys. Rev. Lett. 108, 021601 (2012).CrossRefADSGoogle Scholar
  33. 33.
    K.A. Mamo, JHEP 10, 070 (2012).CrossRefADSGoogle Scholar
  34. 34.
    A. Nakamura, S. Sakai, Phys. Rev. Lett. 94, 072305 (2005).CrossRefADSGoogle Scholar
  35. 35.
    H.B. Meyer, Phys. Rev. D 76, 101701 (2007).CrossRefADSGoogle Scholar
  36. 36.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, JHEP 11, 001 (2000).CrossRefADSGoogle Scholar
  37. 37.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, JHEP 05, 051 (2003).CrossRefADSGoogle Scholar
  38. 38.
    J.I. Kapusta, Ch. Gale, Finite-Temperature Field Theory (Cambridge, 2006).Google Scholar
  39. 39.
    S. Plumari et al., Phys. Rev. C 86, 054902 (2012).CrossRefADSGoogle Scholar
  40. 40.
    A.V. Nesterenko, Phys. Rev. D 62, 094028 (2000).MathSciNetCrossRefADSGoogle Scholar
  41. 41.
    A.V. Nesterenko, Phys. Rev. D 64, 116009 (2001).CrossRefADSGoogle Scholar
  42. 42.
    A.V. Nesterenko, Int. J. Mod. Phys. A 18, 5475 (2003).CrossRefADSMATHGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Physik DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.ECTVilla TambosiVillazzano (TN)Italy

Personalised recommendations