Skip to main content

Small radii of neutron stars as an indication of novel in-medium effects

Abstract

At present, neutron star radii from both observations and model predictions remain very uncertain. Whereas different models can predict a wide range of neutron star radii, it is not possible for most models to predict radii that are smaller than about 10km, thus if such small radii are established in the future they will be very difficult to reconcile with model estimates. By invoking a new term in the equation of state that enhances the energy density, but leaves the pressure unchanged we simulate the current uncertainty in the neutron star radii. This new term can be possibly due to the exchange of the weakly interacting light U-boson with appropriate in-medium parameters, which does not compromise the success of the conventional nuclear models. The validity of this new scheme will be tested eventually by more precise measurements of neutron star radii.

This is a preview of subscription content, access via your institution.

References

  1. X.T. He, F.J. Fattoyev, B.A. Li, W.G. Newton, Phys. Rev. C 91, 015810 (2015).

    Article  ADS  Google Scholar 

  2. M.I. Krivoruchenko, F. Simkovic, A. Faessler, Phys. Rev. D 79, 125023 (2009).

    Article  ADS  Google Scholar 

  3. D.H. Wen, B.A. Li, L.W. Chen, Phys. Rev. Lett. 103, 211102 (2009).

    Article  ADS  Google Scholar 

  4. D.R. Zhang, P.L. Yin, W. Wang, Q.C. Wang, W.Z. Jiang, Phys. Rev. C 83, 035801 (2011).

    Article  ADS  Google Scholar 

  5. R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988).

    Article  ADS  Google Scholar 

  6. J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001).

    Article  ADS  Google Scholar 

  7. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007).

    Article  ADS  Google Scholar 

  8. B.A. Li, A.W. Steiner, Phys. Lett. B 642, 436 (2006).

    Article  ADS  Google Scholar 

  9. W.Z. Jiang, B.A. Li, L.W. Chen, Phys. Lett. B 653, 184 (2007).

    Article  ADS  Google Scholar 

  10. B. Kämpfer, Phys. Lett. B 101, 366 (1981).

    Article  ADS  Google Scholar 

  11. N.K. Glendenning, C. Kettner, Astron. Astrophys. 353, L9 (2000).

    ADS  Google Scholar 

  12. J. Schaffner-Bielich, M. Hanauske, H. Stöcker, C. Greiner, Phys. Rev. Lett. 89, 171101 (2002).

    Article  ADS  Google Scholar 

  13. M.C. Miller, arXiv/1312.0029.

  14. P. Haensel, Astron. Astrophy. 380, 186 (2001).

    Article  ADS  Google Scholar 

  15. C.M. Zhang, H.X. Yin, Y. Kojima, H.K. Chang et al., Mon. Not. Roy. Astron. Soc. 374, 232 (2007).

    Article  ADS  Google Scholar 

  16. V. Suleimanov, J. Poutanen, M. Revnivtsev, K. Werner, Astrophys. J. 742, 122 (2011).

    Article  ADS  Google Scholar 

  17. A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010).

    Article  ADS  Google Scholar 

  18. F. Özel, G. Baym, T. Guver, Phys. Rev. D 82, 101301 (2010).

    Article  ADS  Google Scholar 

  19. T. Güver, F. Özel, Astrophys. J. 765, L1 (2013).

    Article  ADS  Google Scholar 

  20. S. Guillot, M. Servillat, N.A. Webb, R.E. Rutledge, Astrophys. J. 772, 7 (2013).

    Article  ADS  Google Scholar 

  21. J.M. Lattimer, A.W. Steiner, Astrophys. J. 784, 123 (2014).

    Article  ADS  Google Scholar 

  22. A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. Lett. 765, L5 (2013).

    Article  ADS  Google Scholar 

  23. C.O. Heinke, H.N. Cohn, P.M. Lugger et al., Mon. Not. R. Astron. Soc. 444, 443 (2014).

    Article  ADS  Google Scholar 

  24. S. Guillot, R.E. Rutledge, Astrophys. J. 796, 1, L3 (2014).

    Article  ADS  Google Scholar 

  25. F. Özel, D. Psaltis, T. Güver, G. Baym, C. Heinke, S. Guillot, arXiv:1505.05155.

  26. S. Bogdanov, Astrophys. J. 762, 96 (2013).

    Article  ADS  Google Scholar 

  27. J. Poutanen, J. Nättilä, J.J.E. Kajava et al., Mon. Not. R. Astron. Soc. 442, 3777 (2014).

    Article  ADS  Google Scholar 

  28. K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astrophys. J. 733, 11 (2013).

    Article  ADS  Google Scholar 

  29. P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002).

    Article  ADS  Google Scholar 

  30. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010).

    Article  ADS  Google Scholar 

  31. J. Antoniadis, P.C.C. Freire, N. Wex et al., Science 340, 448 (2013).

    Article  ADS  Google Scholar 

  32. W.Z. Jiang, B.A. Li, L.W. Chen, Phys. Rev. C 76, 054314 (2007).

    Article  ADS  Google Scholar 

  33. J. Piekarewicz, Phys. Rev. C 69, 041301 (2004).

    Article  ADS  Google Scholar 

  34. M.B. Tsang, J.R. Stone, F. Camera et al., Phys. Rev. C 86, 015803 (2012).

    Article  ADS  Google Scholar 

  35. W.G. Newton, M. Gearheart, B.A. Li, Astrophys. J. Suppl. Ser. 204, 9 (2013).

    Article  ADS  Google Scholar 

  36. W.G. Newton, B.A. Li, Phys. Rev. C 80, 065809 (2009).

    Article  ADS  Google Scholar 

  37. A.W. Steiner, S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012).

    Article  ADS  Google Scholar 

  38. D.H. Wen, W.G. Newton, B.A. Li, Phys. Rev. C 85, 025801 (2012).

    Article  ADS  Google Scholar 

  39. J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012).

    Article  ADS  Google Scholar 

  40. B.A. Li, X. Han, Phys. Lett. B 727, 276 (2013).

    Article  ADS  Google Scholar 

  41. B.-A. Li, A. Ramos, G. Verde, I. Vidaña (Editors), Topical issue on nuclear symmetry energy, in The European Physical Journal A, Vol. 50 (2014).

  42. B.-J. Cai, F.J. Fattoyev, B.-A. Li, W.G. Newton, Phys. Rev. C 92, 015802 (2015).

    Article  ADS  Google Scholar 

  43. L. Lindblom, Astrophys. J. 398, 569 (1992).

    Article  ADS  Google Scholar 

  44. W.-C. Chen, J. Piekarewicz, arXiv:1505.07436.

  45. R. Brockmann, H. Toki, Phys. Rev. Lett. 68, 3408 (1992).

    Article  ADS  Google Scholar 

  46. R. Fritz, H. Müther, R. Machleidt, Phys. Rev. Lett. 71, 46 (1993).

    Article  ADS  Google Scholar 

  47. Z.Y. Ma, H.L. Shi, B.Q. Chen, Phys. Rev. C 50, 3170 (1994).

    Article  ADS  Google Scholar 

  48. P. Fayet, Phys. Lett. B 95, 285 (1980).

    Article  ADS  Google Scholar 

  49. P. Fayet, Phys. Lett. B 172, 363 (1986).

    MathSciNet  Article  ADS  Google Scholar 

  50. P. Fayet, Nucl. Phys. B 347, 743 (1990).

    Article  ADS  Google Scholar 

  51. E. Fischbach, C.L. Talmadge, The Search for Non- Newtonian Gravity (Springer-Verlag, Inc., New York, 1999) ISBN 0-387-98490-9.

  52. E.G. Adelberger et al., Annu. Rev. Nucl. Part. Sci. 53, 77 (2003).

    Article  ADS  Google Scholar 

  53. C. Boehm, D. Hooper, J. Silk, M. Casse, J. Paul, Phys. Rev. Lett. 92, 101301 (2004).

    Article  ADS  Google Scholar 

  54. C. Boehm, P. Fayet, Nucl. Phys. B 683, 219 (2004).

    Article  ADS  Google Scholar 

  55. N. Borodatchenkova, D. Choudhury, M. Drees, Phys. Rev. Lett. 96, 141802 (2006).

    Article  ADS  Google Scholar 

  56. S.H. Zhu, Phys. Rev. D 75, 115004 (2007).

    Article  ADS  Google Scholar 

  57. P. Fayet, Phys. Rev. D 75, 115017 (2007).

    Article  ADS  Google Scholar 

  58. P. Jean et al., Astron. Astrophys. 407, L55 (2003).

    Article  ADS  Google Scholar 

  59. J. Knodlseder et al., Astron. Astrophys. 411, L457 (2003).

    Article  ADS  Google Scholar 

  60. N. Prantzos, C. Boehm, A.M. Bykov et al., Rev. Mod. Phys. 83, 1001 (2011).

    Article  ADS  Google Scholar 

  61. J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 423 (1977).

    MathSciNet  Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Zhou Jiang.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, WZ., Li, BA. & Fattoyev, F.J. Small radii of neutron stars as an indication of novel in-medium effects. Eur. Phys. J. A 51, 119 (2015). https://doi.org/10.1140/epja/i2015-15119-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15119-7

Keywords

  • Neutron Star
  • Nuclear Matter
  • Symmetry Energy
  • Nuclear Symmetry Energy
  • Neutron Star Matter