Advertisement

Melting hadrons, boiling quarks

  • Johann RafelskiEmail author
Open Access
Review

Abstract.

In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. The material of this review is complemented by two early and unpublished reports containing the prediction of the different forms of hadron matter, and of the formation of QGP in relativistic heavy ion collisions, including the discussion of strangeness, and in particular strange antibaryon signature of QGP.

Keywords

Large Hadron Collider Quark Gluon Plasma Quark Matter Large Hadron Collider Energy Statistical Hadronization Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Rafelski (Editor), Melting Hadrons, Boiling Quarks: From Hagedorn temperature to ultra-relativistic heavy-ion collisions at CERNGoogle Scholar
  2. 2.
    P. Koch, B. Müller, J. Rafelski, Phys. Rep. 142, 167 (1986) Strangeness in Relativistic Heavy Ion CollisionsADSCrossRefGoogle Scholar
  3. 3.
    H.C. Eggers, J. Rafelski, Int. J. Mod. Phys. A 6, 1067 (1991) Strangeness and quark gluon plasma: aspects of theory and experimentADSCrossRefGoogle Scholar
  4. 4.
    J. Rafelski, J. Letessier, A. Tounsi, Acta Phys. Pol. B 27, 1037 (1996) Strange particles from dense hadronic matterGoogle Scholar
  5. 5.
    J. Letessier, J. Rafelski, Int. J. Mod. Phys. E 9, 107 (2000) Observing quark gluon plasma with strange hadronsADSGoogle Scholar
  6. 6.
    J. Letessier, J. Rafelski, Hadrons and quark-gluon plasma, in Cambridge Monographs on Particle Physics Nuclear Physics and Cosmology, Vol. 18 (Cambridge University Press, Cambridge, 2002) pp. 1--397Google Scholar
  7. 7.
    J. Letessier, J. Rafelski, Eur. Phys. J. A 35, 221 (2008) Hadron production and phase changes in relativistic heavy ion collisionsADSCrossRefGoogle Scholar
  8. 8.
    S. Weinberg, The Quantum Theory of Fields, Vols. 1, 2 (Cambridge University Press, Cambridge 1995, 1996)Google Scholar
  9. 9.
    Kohsuke Yagi, Tetsuo Hatsuda, Quark-Gluon Plasma: From Big Bang to Little Bang (Cambridge University Press, Cambridge, 2008)Google Scholar
  10. 10.
    J. Rafelski, CERN Cour. 54, 10:57 (2014) http://cerncourier.com/cws/article/cern/59346 Google Scholar
  11. 11.
    R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965) Statistical thermodynamics of strong interactions at high-energiesGoogle Scholar
  12. 12.
    S.C. Frautschi, Phys. Rev. D 3, 2821 (1971) Statistical bootstrap model of hadronsADSCrossRefGoogle Scholar
  13. 13.
    R. Hagedorn, Lect. Notes Phys. 221, 53 (1985) preprint CERN-TH-3918/84, reprinted in chapt. 25 of ref. HagedornBookADSCrossRefGoogle Scholar
  14. 14.
    H.G. Pugh, Introductory remarks presented at the Workshop on Future Relativistic Heavy Ion Experiments held at GSI Darmstadt 7-10 October 1980, appeared in proceedings: GSI Orange report 1981-6, edited by R. Bock, R. Stock, preprint LBL-11974 web location verfied July 2015Google Scholar
  15. 15.
    J. Rafelski, Eur. Phys. J. A 51, 115 (2015) OriginallyADSCrossRefGoogle Scholar
  16. 16.
    J. Rafelski, Eur. Phys. J. A 51, 116 (2015) OriginallyADSCrossRefGoogle Scholar
  17. 17.
    J. Kapusta, B. Müller, J. Rafelski, Quark-Gluon Plasma: Theoretical Foundations: An annotated reprint collection (Elsevier, Amsterdam, 2003) pp. 1--817Google Scholar
  18. 18.
    J. Rafelski, Eur. Phys. J. ST 155, 139 (2008) Strangeness Enhancement: Challenges and SuccessesCrossRefGoogle Scholar
  19. 19.
    J. Yellin, Nucl. Phys. B 52, 583 (1973) An explicit solution of the statistical bootstrapADSCrossRefGoogle Scholar
  20. 20.
    T.E.O. Ericson, J. Rafelski, CERN Cour. 43N7, 30 (2003) web location verified July 2015 http://cds.cern.ch/record/1733518 Google Scholar
  21. 21.
    C.J. Hamer, S.C. Frautschi, Phys. Rev. D 4, 2125 (1971) Determination of asymptotic parameters in the statistical bootstrap modelADSCrossRefGoogle Scholar
  22. 22.
    S.C. Frautschi, C.J. Hamer, Nuovo Cimento A 13, 645 (1973) Effective temperature of resonance decay in the statistical bootstrap modelADSCrossRefGoogle Scholar
  23. 23.
    C.J. Hamer, Phys. Rev. D 8, 3558 (1973) Explicit solution of the statistical bootstrap model via Laplace transformsADSCrossRefGoogle Scholar
  24. 24.
    C.J. Hamer, Phys. Rev. D 9, 2512 (1974) Single Cluster Formation in the Statistical Bootstrap ModelADSCrossRefGoogle Scholar
  25. 25.
    R.D. Carlitz, Phys. Rev. D 5, 3231 (1972) Hadronic matter at high densityADSCrossRefGoogle Scholar
  26. 26.
    R. Hagedorn, Nuovo Cimento A 52, 1336 (1967) On the hadronic mass spectrumADSCrossRefGoogle Scholar
  27. 27.
    W. Nahm, Nucl. Phys. B 45, 525 (1972) Analytical solution of the statistical bootstrap modelADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Rafelski, R. Hagedorn, Thermodynamics of hot nuclear matter in the statistical bootstrap model, presented at Bormio Winter Meeting January 1979, also chapt. 23 in ref. HagedornBook, web location verfied July 2015: http://inspirehep.net/record/1384658/files/CM-P00055555.pdf
  29. 29.
    H. Satz, Lect. Notes Phys. 841, 1 (2012) Extreme states of matter in strong interaction physics. An introductionCrossRefGoogle Scholar
  30. 30.
    A. Tounsi, J. Letessier, J. Rafelski, in Proceedings of Divonne 1994 Hot hadronic matter, NATO-ASI series B, Vol. 356, Hadronic matter equation of state and the hadron mass spectrum (1995) pp. 105--116Google Scholar
  31. 31.
    J. Letessier, J. Rafelski, unpublished, Evaluation made for the CERN Courier article in honor of R. Hagedorn Ericson:2003ya, based on the method of ref. Tounsi:1994tuGoogle Scholar
  32. 32.
    M. Beitel, K. Gallmeister, C. Greiner, Phys. Rev. C 90, 045203 (2014) Thermalization of Hadrons via Hagedorn StatesADSCrossRefGoogle Scholar
  33. 33.
    A.M. Polyakov, Phys. Lett. B 72, 477 (1978) Thermal Properties of Gauge Fields and Quark LiberationADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    L. Susskind, Phys. Rev. D 20, 2610 (1979) Lattice Models of Quark Confinement at High TemperatureADSCrossRefGoogle Scholar
  35. 35.
    J.C. Collins, M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975) Superdense Matter: Neutrons Or Asymptotically Free Quarks?ADSCrossRefGoogle Scholar
  36. 36.
    N. Cabibbo, G. Parisi, Phys. Lett. B 59, 67 (1975) Exponential Hadronic Spectrum and Quark LiberationADSCrossRefGoogle Scholar
  37. 37.
    B.C. Barrois, Nucl. Phys. B 129, 390 (1977) Superconducting Quark MatterADSCrossRefGoogle Scholar
  38. 38.
    M.G. Alford, K. Rajagopal, F. Wilczek, Phys. Lett. B 422, 247 (1998) QCD at finite baryon density: Nucleon droplets and color superconductivityADSCrossRefGoogle Scholar
  39. 39.
    M.G. Alford, K. Rajagopal, F. Wilczek, Nucl. Phys. B 537, 443 (1999) Color flavor locking and chiral symmetry breaking in high density QCDADSCrossRefGoogle Scholar
  40. 40.
    M.G. Alford, A. Schmitt, K. Rajagopal, T. Schfer, Rev. Mod. Phys. 80, 1455 (2008) Color superconductivity in dense quark matterADSCrossRefGoogle Scholar
  41. 41.
    W. Broniowski, W. Florkowski, Phys. Lett. B 490, 223 (2000) Different Hagedorn temperatures for mesons and baryons from experimental mass spectra, compound hadrons, and combinatorial saturationADSCrossRefGoogle Scholar
  42. 42.
    W. Broniowski, W. Florkowski, L.Y. Glozman, Phys. Rev. D 70, 117503 (2004) Update of the Hagedorn mass spectrumADSCrossRefGoogle Scholar
  43. 43.
    J. Cleymans, D. Worku, Mod. Phys. Lett. A 26, 1197 (2011) The Hagedorn temperature RevisitedADSCrossRefGoogle Scholar
  44. 44.
    T.D. Cohen, V. Krejcirik, J. Phys. G 39, 055001 (2012) Does the Empirical Meson Spectrum Support the Hagedorn Conjecture?ADSCrossRefGoogle Scholar
  45. 45.
    T.S. Biro, A. Peshier, Phys. Lett. B 632, 247 (2006) Limiting temperature from a parton gas with power-law tailed distributionADSCrossRefGoogle Scholar
  46. 46.
    P.M. Lo, M. Marczenko, K. Redlich, C. Sasaki, Matching Hagedorn mass spectrum with Lattice QCD, arXiv:1507.06398 [nucl-th]
  47. 47.
    A. Majumder, B. Müller, Phys. Rev. Lett. 105, 252002 (2010) Hadron Mass Spectrum from Lattice QCDADSCrossRefGoogle Scholar
  48. 48.
    S.Z. Belenky, Nucl. Phys. 2, 259 (1956) Connection between scattering and multiple production of particlesCrossRefGoogle Scholar
  49. 49.
    K. Redlich, H. Satz, The Legacy of Rolf Hagedorn: Statistical Bootstrap, Ultimate Temperature, arXiv:1501.07523 [hep-ph], chapt. 7 in HagedornBook
  50. 50.
    J. Rafelski, Nucl. Phys. Proc. Suppl. 243, 155 (2013) Connecting QGP-Heavy Ion Physics to the Early UniverseADSCrossRefGoogle Scholar
  51. 51.
    L.P. Csernai, J.I. Kapusta, Phys. Rev. D 46, 1379 (1992) Nucleation of relativistic first order phase transitionsADSCrossRefGoogle Scholar
  52. 52.
    T.S. Biro, A. Jakovac, Phys. Rev. D 90, 094029 (2014) QCD above $T_c$: Hadrons, partons, and the continuumADSCrossRefGoogle Scholar
  53. 53.
    A.Z. Mekjian, Phys. Rev. C 17, 1051 (1978) Explosive nucleosynthesis, equilibrium thermodynamics, and relativistic heavy-ion collisionsADSCrossRefGoogle Scholar
  54. 54.
    I. Montvay, J. Zimanyi, Nucl. Phys. A 316, 490 (1979) Hadron Chemistry in Heavy Ion CollisionsADSCrossRefGoogle Scholar
  55. 55.
    P. Koch, J. Rafelski, Nucl. Phys. A 444, 678 (1985) Time Evolution of Strange Particle Densities in Hot Hadronic MatterADSCrossRefGoogle Scholar
  56. 56.
    H. Koppe, Phys. Rev. 76, 688 (1949) On the Production of MesonsADSCrossRefGoogle Scholar
  57. 57.
    H. Koppe, Z. Naturforsch. A 3, 251 (1948) The meson output from the bombardment of light nuclei with $\alpha$-particlesADSGoogle Scholar
  58. 58.
    E. Fermi, Prog. Theor. Phys. 5, 570 (1950) High-energy nuclear eventsADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    I.Y. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 78, 889 (1951) (translated in Rafelski:2003zzGoogle Scholar
  60. 60.
    R. Hagedorn, Nuovo Cimento A 56, 1027 (1968) Hadronic matter near the boiling pointADSCrossRefGoogle Scholar
  61. 61.
    P. Koch, J. Rafelski, South Afr. J. Phys. 9, 8 (1986) web locatio verified July 2015 http://www.physics.arizona.edu/~ Google Scholar
  62. 62.
    G. Torrieri, J. Rafelski, New J. Phys. 3, 12 (2001) Search for QGP and thermal freezeout of strange hadronsADSCrossRefGoogle Scholar
  63. 63.
    W. Broniowski, W. Florkowski, Phys. Rev. C 65, 064905 (2002) Strange particle production at RHIC in a single freezeout modelADSCrossRefGoogle Scholar
  64. 64.
    A. Baran, W. Broniowski, W. Florkowski, Acta Phys. Pol. B 35, 779 (2004) Description of the particle ratios and transverse momentum spectra for various centralities at RHIC in a single freezeout modelADSGoogle Scholar
  65. 65.
    J. Rafelski, Phys. Lett. B 262, 333 (1991) Strange anti-baryons from quark - gluon plasmaADSCrossRefGoogle Scholar
  66. 66.
    T. Csorgo, L.P. Csernai, Phys. Lett. B 333, 494 (1994) Quark - gluon plasma freezeout from a supercooled state?ADSCrossRefGoogle Scholar
  67. 67.
    L.P. Csernai, I.N. Mishustin, Phys. Rev. Lett. 74, 5005 (1995) Fast hadronization of supercooled quark - gluon plasmaADSCrossRefGoogle Scholar
  68. 68.
    T.S. Biro, P. Levai, J. Zimanyi, Phys. Rev. C 59, 1574 (1999) Hadronization with a confining equation of stateADSCrossRefGoogle Scholar
  69. 69.
    J. Rafelski, J. Letessier, Phys. Rev. Lett. 85, 4695 (2000) Sudden hadronization in relativistic nuclear collisionsADSCrossRefGoogle Scholar
  70. 70.
    A. Keranen, J. Manninen, L.P. Csernai, V. Magas, Phys. Rev. C 67, 034905 (2003) Statistical hadronization of supercooled quark gluon plasmaADSCrossRefGoogle Scholar
  71. 71.
    S. Borsanyi, Nucl. Phys. A 904, 270c (2013) Thermodynamics of the QCD transition from latticeADSCrossRefGoogle Scholar
  72. 72.
    S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99 (2014) Full result for the QCD equation of state with $2+1$ flavorsADSCrossRefGoogle Scholar
  73. 73.
    M. Petran, J. Letessier, V. Petracek, J. Rafelski, Phys. Rev. C 88, 034907 (2013) Hadron production and quark-gluon plasma hadronization in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeVADSCrossRefGoogle Scholar
  74. 74.
    M. Petran, J. Rafelski, Phys. Rev. C 88, 021901 (2013) Universal hadronization condition in heavy ion collisions at $\sqrt{s_{\ab{NN}}} = 62$ GeVADSCrossRefGoogle Scholar
  75. 75.
    M. Petran, J. Letessier, V. Petracek, J. Rafelski, J. Phys. Conf. Ser. 509, 012018 (2014) Interpretation of strange hadron production at LHCADSCrossRefGoogle Scholar
  76. 76.
    M. Petran, J. Letessier, V. Petracek, J. Rafelski, Acta Phys. Pol. Suppl. 5, 255 (2012) Strangeness Production in Au-Au collisions at $\sqrt{s_{NN}} = 62.4$ GeVCrossRefGoogle Scholar
  77. 77.
    J. Rafelski, J. Letessier, J. Phys. G 36, 064017 (2009) Critical Hadronization PressureADSCrossRefGoogle Scholar
  78. 78.
    J. Rafelski, J. Letessier, PoS CONFINEMENT 8, 111 (2008) Particle Production and Deconfinement ThresholdGoogle Scholar
  79. 79.
    J. Letessier, J. Rafelski, Phys. Rev. C 59, 947 (1999) Chemical non-equilibrium and deconfinement in 200-A/GeV sulphur induced reactionsADSCrossRefGoogle Scholar
  80. 80.
    P. Braun-Munzinger, J. Stachel, J.P. Wessels, N. Xu, Phys. Lett. B 344, 43 (1995) Thermal equilibration and expansion in nucleus-nucleus collisions at the AGSADSCrossRefGoogle Scholar
  81. 81.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006) Hadron production in central nucleus-nucleus collisions at chemical freeze-outADSCrossRefGoogle Scholar
  82. 82.
    F. Becattini, P. Castorina, A. Milov, H. Satz, Eur. Phys. J. C 66, 377 (2010) A Comparative analysis of statistical hadron productionADSCrossRefGoogle Scholar
  83. 83.
    J. Manninen, F. Becattini, Phys. Rev. C 78, 054901 (2008) Chemical freeze-out in ultra-relativistic heavy ion collisions at $\sqrt{s_{\ab{NN}}} = 130$ and 200-GeVADSCrossRefGoogle Scholar
  84. 84.
    F. Becattini, M. Gazdzicki, A. Keranen, J. Manninen, R. Stock, Phys. Rev. C 69, 024905 (2004) Chemical equilibrium in nucleus nucleus collisions at relativistic energiesADSCrossRefGoogle Scholar
  85. 85.
    J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006) Comparison of chemical freeze-out criteria in heavy-ion collisionsADSCrossRefGoogle Scholar
  86. 86.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 034909 (2009) Systematic Measurements of Identified Particle Spectra in $pp$, $d^+$ Au and Au+Au Collisions from STARCrossRefGoogle Scholar
  87. 87.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 252301 (2012) Pion, Kaon, and Proton Production in Central Pb--Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeVADSCrossRefGoogle Scholar
  88. 88.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013) Centrality dependence of $\pi$, K, p production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeVADSCrossRefGoogle Scholar
  89. 89.
    I.A. Karpenko, Y.M. Sinyukov, K. Werner, Phys. Rev. C 87, 024914 (2013) Uniform description of bulk observables in the hydrokinetic model of $A+A$ collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron ColliderADSCrossRefGoogle Scholar
  90. 90.
    A.S. Botvina, J. Steinheimer, E. Bratkovskaya, M. Bleicher, J. Pochodzalla, Phys. Lett. B 742, 7 (2015) Formation of hypermatter and hypernuclei within transport models in relativistic ion collisionsADSCrossRefGoogle Scholar
  91. 91.
    J. Letessier, A. Tounsi, U.W. Heinz, J. Sollfrank, J. Rafelski, Phys. Rev. D 51, 3408 (1995) Strangeness conservation in hot nuclear fireballsADSCrossRefGoogle Scholar
  92. 92.
    J. Rafelski, J. Letessier, Nucl. Phys. A 715, 98 (2003) Testing limits of statistical hadronizationADSCrossRefGoogle Scholar
  93. 93.
    T.D. Lee, Trans. N.Y. Acad. Sci., Ser. II 40, 111 (1980)CrossRefGoogle Scholar
  94. 94.
    T.D. Lee, Particle Physics and Introduction to Field Theory (Science Press, Harwood Academic, Beijing, Chur, London, 1981)Google Scholar
  95. 95.
    K.G. Wilson, Phys. Rev. D 10, 2445 (1974) Confinement of QuarksADSCrossRefGoogle Scholar
  96. 96.
    A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974) A New Extended Model of HadronsADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    T.A. DeGrand, R.L. Jaffe, K. Johnson, J.E. Kiskis, Phys. Rev. D 12, 2060 (1975) Masses and Other Parameters of the Light HadronsADSCrossRefGoogle Scholar
  98. 98.
    K. Johnson, Acta Phys. Pol. B 6, 865 (1975) The M.I.T. Bag ModelGoogle Scholar
  99. 99.
    A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1984) Chiral Symmetry and the Bag Model: A New Starting Point for Nuclear PhysicsGoogle Scholar
  100. 100.
    A.T.M. Aerts, J. Rafelski, Phys. Lett. B 148, 337 (1984) QCD, Bags and Hadron MassesADSCrossRefGoogle Scholar
  101. 101.
    A.T.M. Aerts, J. Rafelski, Strange Hadrons In The Mit Bag Model CERN-TH-4160-85, UCT-TP-27-2-1985, web location verified July 2015 http://www-lib.kek.jp/cgi-bin/img_index?8505459
  102. 102.
    R.L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C 63, 054905 (2001) Enhanced $J/\psi$ production in deconfined quark matterADSCrossRefGoogle Scholar
  103. 103.
    M. Schroedter, R.L. Thews, J. Rafelski, Phys. Rev. C 62, 024905 (2000) $B_c$ meson production in nuclear collisions at RHICADSCrossRefGoogle Scholar
  104. 104.
    A. Rothkopf, T. Hatsuda, S. Sasaki, Phys. Rev. Lett. 108, 162001 (2012) Complex Heavy-Quark Potential at Finite Temperature from Lattice QCDADSCrossRefGoogle Scholar
  105. 105.
    A. Bazavov, P. Petreczky, Nucl. Phys. A 904, 599c (2013) On static quark anti-quark potential at non-zero temperatureADSCrossRefGoogle Scholar
  106. 106.
    B.J. Harrington, A. Yildiz, Phys. Rev. Lett. 33, 324 (1974) High Density Phase Transitions in Gauge TheoriesADSCrossRefGoogle Scholar
  107. 107.
    S.A. Chin, Phys. Lett. B 78, 552 (1978) Transition to Hot Quark Matter in Relativistic Heavy Ion CollisionADSCrossRefGoogle Scholar
  108. 108.
    A. Bazavov et al., Phys. Rev. D 80, 014504 (2009) Equation of state and QCD transition at finite temperatureADSCrossRefGoogle Scholar
  109. 109.
    HotQCD Collaboration (A. Bazavov et al.), Phys. Rev. D 90, 094503 (2014) Equation of state in $(2 + 1)$-flavor QCDADSGoogle Scholar
  110. 110.
    J. Letessier, J. Rafelski, Phys. Rev. C 67, 031902 (2003) QCD equations of state and the QGP liquid modelADSCrossRefGoogle Scholar
  111. 111.
    J.O. Andersen, N. Haque, M.G. Mustafa, M. Strickland, N. Su, Equation of State for QCD at finite temperature and density. Resummation versus lattice data, arXiv:1411.1253 [hep-ph], invited talk at 11th Quark Confinement and the Hadron Spectrum, September 8-12 2014, Saint Petersburg, Russia
  112. 112.
    M. Strickland, J.O. Andersen, A. Bandyopadhyay, N. Haque, M.G. Mustafa, N. Su, Nucl. Phys. A 931, 841 (2014) Three loop HTL perturbation theory at finite temperature and chemical potentialADSCrossRefGoogle Scholar
  113. 113.
    N. Haque, A. Bandyopadhyay, J.O. Andersen, M.G. Mustafa, M. Strickland, N. Su, JHEP 05, 027 (2014) Three-loop HTLpt thermodynamics at finite temperature and chemical potentialADSCrossRefGoogle Scholar
  114. 114.
    L. Van Hove, in 17th International Symposium on Multiparticle Dynamics, held in Seewinkel, Austria, 16--20 Jun 1986, edited by J. MacNaughton, W. Majerotto, Walter, M. Markytan (World Scientific, Singapore, 1986) pp. 801--818 Theoretical prediction of a new state of matter, the “quark-gluon plasma” (also called “quark matter”)Google Scholar
  115. 115.
    E.V. Shuryak, Phys. Lett. B 78, 150 (1978) (Sov. J. Nucl. Phys. 28ADSCrossRefGoogle Scholar
  116. 116.
    O.K. Kalashnikov, V.V. Klimov, Phys. Lett. B 88, 328 (1979) Phase Transition in Quark-Gluon PlasmaADSCrossRefGoogle Scholar
  117. 117.
    D.D. Ivanenko, D.F. Kurdgelaidze, Astrophysics 1, 251 (1965) (Astrofiz. 1ADSCrossRefGoogle Scholar
  118. 118.
    H. Fritzsch, M. Gell-Mann, H. Leutwyler, Phys. Lett. B 47, 365 (1973) Advantages of the Color Octet Gluon PictureADSCrossRefGoogle Scholar
  119. 119.
    P. Carruthers, Collect. Phenomena 1, 147 (1974) Quarkium: a bizarre Fermi liquidGoogle Scholar
  120. 120.
    A.D. Linde, Rep. Prog. Phys. 42, 389 (1979) Phase Transitions in Gauge Theories and CosmologyADSCrossRefGoogle Scholar
  121. 121.
    B.A. Freedman, L.D. McLerran, Phys. Rev. D 16, 1169 (1977) Fermions and Gauge Vector Mesons at Finite Temperature and Density. 3. The Ground State Energy of a Relativistic Quark GasADSCrossRefGoogle Scholar
  122. 122.
    E.V. Shuryak, Sov. Phys. JETP 47, 212 (1978) (Zh. Eksp. Teor. Fiz. 74ADSGoogle Scholar
  123. 123.
    J.I. Kapusta, Nucl. Phys. B 148, 461 (1979) Quantum Chromodynamics at High TemperatureADSCrossRefGoogle Scholar
  124. 124.
    E.V. Shuryak, Phys. Rep. 61, 71 (1980) Quantum Chromodynamics and the Theory of Superdense MatterADSMathSciNetCrossRefGoogle Scholar
  125. 125.
    G.F. Chapline, A.K. Kerman, Preprint CTP-695 MIT-Cambridge - April (1978) web location verified July 2015 http://inspirehep.net/record/134446/files/CTP-695.pdf On the Possibility of Making Quark Matter in Nuclear Collisions
  126. 126.
    G.F. Chapline, M.H. Johnson, E. Teller, M.S. Weiss, Phys. Rev. D 8, 4302 (1973) Highly excited nuclear matterADSCrossRefGoogle Scholar
  127. 127.
    L. Lederman, J. Weneser (Editors), Workshop on BeV/nucleon collisions of heavy ions: How and Why held at Bear Mountain, New York, November 29-December 1, 1974, proceedings available as Brookhaven National Laboratory Report #50445, (BNL-50445, Upton, NY, 1975), web location verified July 2015 http://www.osti.gov/scitech/servlets/purl/4061527
  128. 128.
    T.D. Lee, G.C. Wick, Phys. Rev. D 9, 2291 (1974) Vacuum stability and vacuum excitation in a spin-0 field theoryADSCrossRefGoogle Scholar
  129. 129.
    G. Odyniec, Begin of the search for the Quark-Gluon Plasma, chapt. 12 in ref. HagedornBookGoogle Scholar
  130. 130.
    H.H. Gutbrod, The Path to Heavy Ions at LHC and Beyond, chapt. 13 in ref. HagedornBookGoogle Scholar
  131. 131.
    S.A. Chin, A.K. Kerman, Phys. Rev. Lett. 43, 1292 (1979) Possible longlived hyperstrange multi-quark dropletsADSCrossRefGoogle Scholar
  132. 132.
    G.F. Chapline, A. Granik, Nucl. Phys. A 459, 681 (1986) Production of quark matter via oblique shock wavesADSCrossRefGoogle Scholar
  133. 133.
    R. Anishetty, P. Koehler, L.D. McLerran, Phys. Rev. D 22, 2793 (1980) Central collisions between heavy nuclei at extremely high-energies: The fragmentation regionADSCrossRefGoogle Scholar
  134. 134.
    R. Hagedorn, CERN-TH-3014 (1980), reprinted in chapt. 26 of ref. HagedornBook How To Deal With Relativistic Heavy Ion CollisionsGoogle Scholar
  135. 135.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983) Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity RegionADSCrossRefGoogle Scholar
  136. 136.
    M. Danos, J. Rafelski, Heavy Ion Phys. 14, 97 (2001) Baryon rich quark gluon plasma in nuclear collisionCrossRefGoogle Scholar
  137. 137.
    R. Hagedorn, I. Montvay, J. Rafelski, Thermodynamics Of Nuclear Matter From The Statistical Bootstrap Model, CERN-TH-2605, in Hadronic Matter, Erice, October 1978, edited by N. Cabibbo, L. Sertorio (Plenum Press, New York, 1980) p. 49Google Scholar
  138. 138.
    CERN press release, web location verfied July 2015 http://press.web.cern.ch/press-releases/2000/02/new-state-matter-created-cern
  139. 139.
    Brookhaven National Laboratory, (2000, February 10), Tantalizing Hints Of Quark Gluon Plasma Found At CERN ScienceDaily, web location verfied July 2015 www.sciencedaily.com/releases/2000/02/000209215728.htm
  140. 140.
    BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005) Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experimentCrossRefGoogle Scholar
  141. 141.
    PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005) Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaborationADSCrossRefGoogle Scholar
  142. 142.
    PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005) The PHOBOS perspective on discoveries at RHICADSCrossRefGoogle Scholar
  143. 143.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005) Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisionsADSCrossRefGoogle Scholar
  144. 144.
    BNL press release, web location verfied July 2015 https://www.bnl.gov/rhic/news2/news.asp?a=5756&t=today
  145. 145.
    J. Rafelski, B. Müller, Phys. Rev. Lett. 48, 1066 (1982) 56ADSCrossRefGoogle Scholar
  146. 146.
    T. Biro, J. Zimanyi, Phys. Lett. B 113, 6 (1982) Quarkochemistry in Relativistic Heavy Ion CollisionsADSCrossRefGoogle Scholar
  147. 147.
    J. Rafelski, Phys. Rep. 88, 331 (1982) Formation and Observables of the Quark-Gluon PlasmaGoogle Scholar
  148. 148.
    J. Rafelski, Strangeness in Quark - Gluon Plasma, lecture at Quark Matter Formation And Heavy Ion Collisions, Bielefeld, May 1982, due to mail mishap ultimately published in South Afr. J. Phys. 6, 37 (1983), see chapts. 30, 31 in ref. HagedornBookGoogle Scholar
  149. 149.
    L. Van Hove, Quark Matter Formation And Heavy Ion Collisions: The Theoretical Situation, preprint CERN-TH-3360 19 July 1982, in Multiparticle Dynamics 1982 Volendam 6-11 June 1982Google Scholar
  150. 150.
    F. Antinori, The heavy ion physics programme at the CERN OMEGA spectrometer, web location verfied July 2015 http://cds.cern.ch/record/343249/files/p43.pdf pp. 43--49 in edited by M. Jacob, E. Quercigh, CERN-Yellow Report 97-02, Symposium on the CERN Omega Spectrometer: 25 Years of Physics held 19 March 1997, CERN Geneva, Switzerland, web location verfied July 2015 http://cds.cern.ch/record/330556/files/CERN-97-02.pdf
  151. 151.
    WA97 Collaboration (E. Andersen et al.), Phys. Lett. B 449, 401 (1999) Strangeness enhancement at mid-rapidity in Pb Pb collisions at 158-A-GeV/cADSCrossRefGoogle Scholar
  152. 152.
    STAR Collaboration (B. Abelev et al.), Phys. Lett. B 673, 183 (2009) Energy and system size dependence of phi meson production in Cu+Cu and Au+Au collisionsADSCrossRefGoogle Scholar
  153. 153.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 728, 216 (2014) 734ADSCrossRefGoogle Scholar
  154. 154.
    K. Geiger, D. Kumar Srivastava, Phys. Rev. C 56, 2718 (1997) Parton cascade description of relativistic heavy ion collisions at CERN SPS energies?ADSCrossRefGoogle Scholar
  155. 155.
    K. Geiger, Phys. Rep. 258, 237 (1995) Space-time description of ultrarelativistic nuclear collisions in the QCD parton pictureADSCrossRefGoogle Scholar
  156. 156.
    H.J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, K. Werner, Phys. Rep. 350, 93 (2001) Parton based Gribov-Regge theoryADSCrossRefGoogle Scholar
  157. 157.
    E. Iancu, R. Venugopalan, The Color glass condensate and high-energy scattering in QCD, Quark gluon plasma 3 in edited by R.C. Hwa, X.-N. Wang, (World Scientific, Singapore, 2003) pp. 249--336 [hep-ph/0303204]Google Scholar
  158. 158.
    K. Geiger, Phys. Rev. D 46, 4965 (1992) Thermalization in ultrarelativistic nuclear collisions. 1. Parton kinetics and quark gluon plasma formationADSCrossRefGoogle Scholar
  159. 159.
    K. Geiger, Phys. Rev. D 46, 4986 (1992) Thermalization in ultrarelativistic nuclear collisions. 2. Entropy production and energy densities at RHIC and LHCADSCrossRefGoogle Scholar
  160. 160.
    B. Müller, A. Schafer, Int. J. Mod. Phys. E 20, 2235 (2011) Entropy Creation in Relativistic Heavy Ion CollisionsADSCrossRefGoogle Scholar
  161. 161.
    A. Kurkela, E. Lu, Phys. Rev. Lett. 113, 182301 (2014) Approach to Equilibrium in Weakly Coupled Non-Abelian PlasmasADSCrossRefGoogle Scholar
  162. 162.
    L. Labun, J. Rafelski, Acta Phys. Pol. B 41, 2763 (2010) Strong Field Physics: Probing Critical Acceleration and Inertia with Laser Pulses and Quark-Gluon PlasmaGoogle Scholar
  163. 163.
    J. Letessier, J. Rafelski, A. Tounsi, Phys. Rev. C 50, 406 (1994) Gluon production, cooling and entropy in nuclear collisionsADSCrossRefGoogle Scholar
  164. 164.
    J. Letessier, J. Rafelski, A. Tounsi, Acta Phys. Pol. A 85, 699 (1994) In search of entropyCrossRefGoogle Scholar
  165. 165.
    B. Müller, Phys. Rev. C 67, 061901 (2003) Phenomenology of jet quenching in heavy ion collisionsADSCrossRefGoogle Scholar
  166. 166.
    A. Majumder, M. Van Leeuwen, Prog. Part. Nucl. Phys. A 66, 41 (2011) The Theory and Phenomenology of Perturbative QCD Based Jet QuenchingADSCrossRefGoogle Scholar
  167. 167.
    L. Bhattacharya, R. Ryblewski, M. Strickland, Photon production from a non-equilibrium quark-gluon plasma, arXiv:1507.06605 [hep-ph]
  168. 168.
    R. Ryblewski, M. Strickland, Phys. Rev. D 92, 025026 (2015) Dilepton production from the quark-gluon plasma using $(3+1)$-dimensional anisotropic dissipative hydrodynamicsADSMathSciNetCrossRefGoogle Scholar
  169. 169.
    V. Petousis, Theoretical Review on QCD and Vector Mesons in Dileptonic Quark Gluon Plasma, arXiv:1208.4437 [hep-ph]
  170. 170.
    T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986) $J/\psi$ Suppression by Quark-Gluon Plasma FormationADSCrossRefGoogle Scholar
  171. 171.
    A. Andronic, Nucl. Phys. A 931, 135 (2014) Experimental results and phenomenology of quarkonium production in relativistic nuclear collisionsADSCrossRefGoogle Scholar
  172. 172.
    J.P. Blaizot, D. De Boni, P. Faccioli, G. Garberoglio, Heavy quark bound states in a quark-gluon plasma: dissociation and recombination, arXiv:1503.03857 [nucl-th]
  173. 173.
    ALICE Collaboration (B.B. Abelev et al.), Phys. Lett. B 734, 314 (2014) Centrality, rapidity and transverse momentum dependence of $J/\psi$ suppression in Pb-Pb collisions at $\sqrt{s_{\ab{NN}}} = 2.76$ TeVADSCrossRefGoogle Scholar
  174. 174.
    PHENIX Collaboration (A. Adare), Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, arXiv:1504.05168 [nucl-ex]
  175. 175.
    ALICE Collaboration (J. Adam), One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at $\sqrt{s_{\ab{NN}}} = 2.76$ TeV, arXiv:1506.07884 [nucl-ex]
  176. 176.
    T. Altinoluk, N. Armesto, G. Beuf, A. Kovner, M. Lublinsky, Bose enhancement and the ridge, arXiv:1503.07126 [hep-ph]
  177. 177.
    L.P. Csernai, G. Mocanu, Z. Neda, Phys. Rev. C 85, 068201 (2012) Fluctuations in Hadronizing QGPADSCrossRefGoogle Scholar
  178. 178.
    A. Wroblewski, Acta Phys. Pol. B 16, 379 (1985) On The Strange Quark Suppression Factor In High-energy CollisionsGoogle Scholar
  179. 179.
    K. Rajagopal, Nucl. Phys. A 661, 150 (1999) Mapping the QCD phase diagramADSCrossRefGoogle Scholar
  180. 180.
    M. Gazdzicki, M. Gorenstein, P. Seyboth, Acta Phys. Pol. B 42, 307 (2011) Onset of deconfinement in nucleus-nucleus collisions: Review for pedestrians and expertsCrossRefGoogle Scholar
  181. 181.
    NA49 Collaboration (K. Grebieszkow), Acta Phys. Pol. B 43, 609 (2012) Report from NA49CrossRefGoogle Scholar
  182. 182.
    NA61/SHINE Collaboration (N. Abgrall), Report from the NA61/SHINE experiment at the CERN SPS CERN-SPSC-2014-031, SPSC-SR-145 (2014), web location verified July 2015 http://cds.cern.ch/record/1955138
  183. 183.
    NA61/SHINE Collaboration (M. Gazdzicki), EPJ Web of Conference 95, 01005 (2015) Recent results from NA61/SHINECrossRefGoogle Scholar
  184. 184.
    P. Sorensen, J. Phys. Conf. Ser. 446, 012015 (2013) Beam Energy Scan Results from RHICADSCrossRefGoogle Scholar
  185. 185.
    STAR Collaboration (N.R. Sahoo), J. Phys. Conf. Ser. 535, 012007 (2014) Recent results on event-by-event fluctuations from the RHIC Beam Energy Scan program in the STAR experimentADSCrossRefGoogle Scholar
  186. 186.
    S. Durr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S.D. Katz, S. Krieg, T. Kurth et al., Science 322, 1224 (2008) Ab-Initio Determination of Light Hadron MassesADSCrossRefGoogle Scholar
  187. 187.
    A.S. Kronfeld, Lattice Gauge Theory and the Origin of Mass, in 100 Years of Subatomic Physics, edited by E.M. Henley, S.D. Ellis (World Scientific, Singapore, 2013) pp. 493--518 arXiv:1209.3468 [physics.hist-ph]
  188. 188.
    S. Aoki et al., Eur. Phys. J. C 74, 2890 (2014) Review of lattice results concerning low-energy particle physicsADSCrossRefGoogle Scholar
  189. 189.
    A. Di Giacomo, H.G. Dosch, V.I. Shevchenko, Y.A. Simonov, Phys. Rep. 372, 319 (2002) Field correlators in QCD: Theory and applicationsADSMathSciNetCrossRefGoogle Scholar
  190. 190.
    A. Einstein, Aether, the theory of relativity reprinted in The Berlin Years Writings 1918--1921, Aether and the Theory of Relativity edited by M. Janssen, R. Schulmann, J. Illy, Ch. Lehner, D.K. Buchwald, see pp. 305--309Google Scholar
  191. 191.
    M.J. Fromerth, J. Rafelski, Hadronization of the quark Universe, astro-ph/0211346Google Scholar
  192. 192.
    The Alpha Magnetic Spectrometer: What For web location verfied July 2015 http://www.ams02.org/what-is-ams/what-for/
  193. 193.
    J. Birrell, J. Rafelski, Phys. Lett. B 741, 77 (2015) Quark-gluon plasma as the possible source of cosmological dark radiationCrossRefGoogle Scholar
  194. 194.
    J. Rafelski, J. Birrell, J. Phys. Conf. Ser. 509, 012014 (2014) Traveling Through the Universe: Back in Time to the Quark-Gluon Plasma EraADSCrossRefGoogle Scholar
  195. 195.
    W. Heisenberg, Z. Phys. 101, 533 (1936) Zur Theorie der “Schauer” in der HöhenstrahlungADSCrossRefGoogle Scholar
  196. 196.
    H. Satz, Phys. Rev. D 20, 582 (1979) Dimensionality in the Statistical Bootstrap ModelADSCrossRefGoogle Scholar
  197. 197.
    K. Redlich, L. Turko, Z. Phys. C 5, 201 (1980) Phase Transitions in the Statistical Bootstrap Model with an Internal SymmetryADSMathSciNetCrossRefGoogle Scholar
  198. 198.
    R. Hagedorn, J. Rafelski, Phys. Lett. B 97, 136 (1980) Hot Hadronic Matter and Nuclear CollisionsADSCrossRefGoogle Scholar
  199. 199.
    K. Zalewski, K. Redlich, Thermodynamics of the low density excluded volume hadron gas, arXiv:1507.05433 [hep-ph]
  200. 200.
    V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein, Phys. Rev. C 91, 024905 (2015) Hadron Resonance Gas Equation of State from Lattice QCDADSCrossRefGoogle Scholar
  201. 201.
    B. Touschek, Nuovo Cimento B 58, 295 (1968) Covariant statistical mechanicsADSCrossRefGoogle Scholar
  202. 202.
    J.I. Kapusta, Phys. Rev. D 23, 2444 (1981) Asymptotic Mass Spectrum and Thermodynamics of the Abelian Bag ModelADSCrossRefGoogle Scholar
  203. 203.
    J.I. Kapusta, Nucl. Phys. B 196, 1 (1982) Asymptotic Level Density of Constrained and Interacting FieldsADSCrossRefGoogle Scholar
  204. 204.
    K. Redlich, Z. Phys. C 21, 69 (1983) Asymptotic Hadron Mass Spectrum With an Internal Non-abelian Symmetry GroupADSCrossRefGoogle Scholar
  205. 205.
    M.I. Gorenstein, V.K. Petrov, G.M. Zinovev, Phys. Lett. B 106, 327 (1981) Phase Transition in the Hadron Gas ModelADSCrossRefGoogle Scholar
  206. 206.
    M.I. Gorenstein, M. Gazdzicki, W. Greiner, Phys. Rev. C 72, 024909 (2005) Critical line at the deconfinement phase transitionADSCrossRefGoogle Scholar
  207. 207.
    G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski, Comput. Phys. Commun. 167, 229 (2005) SHARE: Statistical hadronization with resonancesADSCrossRefGoogle Scholar
  208. 208.
    G. Torrieri, S. Jeon, J. Letessier, J. Rafelski, Comput. Phys. Commun. 175, 635 (2006) SHAREv2: Fluctuations and a comprehensive treatment of decay feed-downADSCrossRefGoogle Scholar
  209. 209.
    M. Petran, J. Letessier, J. Rafelski, G. Torrieri, Comput. Phys. Commun. 185, 2056 (2014) SHARE with CHARMADSCrossRefGoogle Scholar
  210. 210.
    Alberica Toia, CERN Cour. 53N4, 31 (2013) Participants and spectators at the heavy-ion fireballGoogle Scholar
  211. 211.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044909 (2013) Centrality determination of Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeVADSCrossRefGoogle Scholar
  212. 212.
    J.W. Li, D.S. Du, Phys. Rev. D 78, 074030 (2008) The Study of $\ab{B} \rightarrow J/\psi \eta'$ decays and determination of $\eta\rightarrow \eta'$ mixing angleADSCrossRefGoogle Scholar
  213. 213.
    V. Begun, W. Florkowski, M. Rybczynski, Phys. Rev. C 90, 014906 (2014) Explanation of hadron transverse-momentum spectra in heavy-ion collisions at $\sqrt{s_{NN}} = 2.76$ TeVADSCrossRefGoogle Scholar
  214. 214.
    V. Begun, W. Florkowski, M. Rybczynski, Phys. Rev. C 90, 054912 (2014) Transverse-momentum spectra of strange particles produced in Pb+Pb collisions at $\sqrt{s_{\ab{NN}}} = 2.76$ TeVADSCrossRefGoogle Scholar
  215. 215.
    ALICE Collaboration (B. Abelev), Strangeness with ALICE: from pp to Pb-Pb, arXiv:1209.3285 [nucl-ex], Proceedings of The Physics of the LHC 2012, held 4-9 June 2012 in Vancouver, BC, http://plhc2012.triumf.ca/
  216. 216.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 111, 222301 (2013) $K^{0}_{S}$ and $\Lambda$ production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeVADSCrossRefGoogle Scholar
  217. 217.
    I. Kuznetsova, J. Rafelski, Eur. Phys. J. C 51, 113 (2007) Heavy flavor hadrons in statistical hadronization of strangeness-rich QGPADSCrossRefGoogle Scholar
  218. 218.
    P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001) Hadron production in Au-Au collisions at RHICADSCrossRefGoogle Scholar
  219. 219.
    F. Karsch, Nucl. Phys. A 698, 199 (2002) Lattice results on QCD thermodynamicsADSCrossRefGoogle Scholar
  220. 220.
    F. Karsch, Nucl. Phys. Proc. Suppl. 83, 14 (2000) Lattice QCD at finite temperature and densityADSCrossRefGoogle Scholar
  221. 221.
    J. Rafelski, J. Letessier, Phys. Rev. C 83, 054909 (2011) Particle Production in $s_{\ab{NN}} = 2.76$ TeVADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.CERN-PH/THGeneva 23Switzerland
  2. 2.Department of PhysicsThe University of Arizona TucsonTucsonUSA

Personalised recommendations