Abstract
Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion (πN) TDAs from \(\bar pp \to e^ + e^ - \pi ^0 \) reaction with the future P̄ANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q 2, the amplitude of the signal channel \(\bar pp \to e^ + e^ - \pi ^0 \) admits a QCD factorized description in terms of πN TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring \(\bar pp \to e^ + e^ - \pi ^0 \) with the P̄ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. \(\bar pp \to \pi ^ + \pi ^ - \pi ^0 \) were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q 2 < 4.3 GeV2 and 5 < q 2 GeV2, respectively, with a neutral pion scattered in the forward or backward cone \(\left| {\cos \theta _{\pi ^0 } } \right| > 0.5\) in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the P̄ANDA detector will allow to achieve a background rejection factor of 5 · 107 (1 · 107) at low (high) q 2 for s = 5 GeV2, and of 1 · 108 (6 · 106) at low (high) q 2 for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb−1 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with P̄ANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing π TDAs.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
S. Boffi, B. Pasquini, Riv. Nuovo Cimento 30, 387 (2007).
L.L. Frankfurt, P.V. Pobylitsa, M.V. Polyakov, M. Strikman, Phys. Rev. D 60, 014010 (1999).
B. Pire, L. Szymanowski, Phys. Rev. D 71, 111501 (2005).
J.P. Lansberg, B. Pire, L. Szymanowski, Phys. Rev. D 75, 074004 (2007) 77.
J.P. Lansberg, B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 85, 054021 (2012).
A. Kubarovskiy, AIP Conf. Proc. 1560, 576 (2013).
P̄ANDA Collaboration (M.F.M. Lutz), Physics Performance Report for P̄ANDA: Strong Interaction Studies with Antiprotons, arXiv:0903.3905 [hep-ex].
U. Wiedner, Prog. Part. Nucl. Phys. 66, 477 (2011).
M. Sudol, M.C. Mora Espí et al., Eur. Phys. J. A 44, 373 (2010).
G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980).
V.L. Chernyak, A.R. Zhitnitsky, Phys. Rep. 112, 173 (1984).
B. Pire, L. Szymanowski, Phys. Lett. B 622, 83 (2005).
J.P. Lansberg, B. Pire, L. Szymanowski, Phys. Rev. D 76, 111502 (2007).
J.P. Lansberg, B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 86, 114033 (2012).
B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Few-Body Syst. 55, 351 (2014).
B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Lett. B 724, 99 (2013).
B. Ma, B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, πN TDAs from charmonium production in association with a forward pion at P̄ANDA, arXiv:1402.0413 [hep-ph].
B. Ma, Simulation of electromagnetic channels for PANDA@FAIR, PhD thesis, Université Paris-Sud, Orsay, France (2014).
C. Adamuscin, E.A. Kuraev, E. Tomasi-Gustafsson, F.E. Maas, Phys. Rev. C 75, 045205 (2007).
J. Guttmann, M. Vanderhaeghen, Phys. Lett. B 719, 136 (2013).
J. Boucher, Feasibility studies of the \(\bar pp \to e^ + e^ - \pi ^0 \) electromagnetic channel at P̄ANDA, PhD thesis, Institut für Physik, Mathematik und Informatik, Johannes Gutenberg Universität Mainz jointly with Institut de Physique Nucleaire d'Orsay, Université Paris-Sud, UMR 8608, CNRS-IN2P3, Orsay, France (2011).
M.C. Mora Espi, Feasibility studies for accessing nucleon structure observables with the P̄ANDA experiment at the future FAIR facility, PhD thesis, Institut für Kernphysik, Johannes Gutenberg Universität, Mainz, Germany (2012).
GEANT4 Collaboration (S. Agostinelli et al.), Nucl. Instrum. Methods A 506, 250 (2003).
K. Föhl et al., Nucl. Instrum. Methods A 595, 88 (2008).
M. Born, E. Wolf, Principles of Optics (Pergamon Oxford, 1970).
P̄ANDA Collaboration (W. Erni et al.), Eur. Phys. J. A 49, 25 (2013).
S. Banerjee, D.N. Brown, C. Chen, D. Cote, G.P. Dubois-Felsmann, I. Gaponenko, P.C. Kim, W.S. Lockman et al., J. Phys. Conf. Ser. 119, 032007 (2008).
B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 84, 074014 (2011).
N.G. Stefanis, EPJ direct 7, 1 (1991).
V.L. Chernyak, A.A. Ogloblin, I.R. Zhitnitsky, Z. Phys. C 42, 583 (1989).
M. Pelizaeus, unpublished (2009).
A. Ryd, D. Lange, N. Kuznetsova, S. Versille, M. Rotondo, D.P. Kirkby, F.K. Wuerthwein, A. Ishikawa, EvtGen: A Monte Carlo Generator for B-Physics, EVTGEN-V00-11-07.
E. Barberio, Z. Was, Comput. Phys. Commun. 79, 291 (1994).
T.C. Bacon, I. Butterworth, R.J. Miller, J.J. Phelan, R.A. Donald, D.N. Edwards, D. Howard, R.S. Moore, Phys. Rev. D 7, 577 (1973).
O. Czyzewski, in Proceedings of the Sienna International Conference on Elementary Particles, edited by G. Bernardini, G.P. Puppi (Società Italiana di Fisica, Bologna, Italy, 1963) p. 271 (also available as CERN/TC/PHYSICS 63-34).
D. Everett, P. Grossmann, P. Mason, H. Muirhead, Nucl. Phys. B 73, 449 (1974).
F. Sai, S. Sakamoto, S.S. Yamamoto, Nucl. Phys. B 213, 371 (1983).
Crystal Barrel Collaboration (A. Abele et al.), Phys. Lett. B 469, 270 (1999).
J. Van de Wiele, S. Ong, Eur. Phys. J. A 46, 291 (2010).
A. Galoian, V.V. Uzhinsky, AIP Conf. Proc. 796, 79 (2005).
V. Flaminio, W.G. Moorhead, D.R.O. Morrision, N. Rivoire, Compilation of cross sections III: p and p̄ induced reactions, CERN-HERA 84-01.
Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014).
J.C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56, 2982 (1997).
T. Horn, X. Qian, J. Arrington, R. Asaturyan, F. Benmokthar, W. Boeglin, P. Bosted, A. Bruell et al., Phys. Rev. C 78, 058201 (2008).
E. Fuchey, A. Camsonne, C. Munoz Camacho, M. Mazouz, G. Gavalian, E. Kuchina, M. Amarian, K.A. Aniol et al., Phys. Rev. C 83, 025201 (2011).
CLAS Collaboration (I. Bedlinskiy), Exclusive π0 electroproduction at W > 2i GeV with CLAS, arXiv:1405.0988 [nucl-ex].
T. Ullrich, Z. Xu, Treatment of Errors in Efficiency Calculations (2008) arXiv:physics/0701199 [physics.data-an]. .
B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 82, 094030 (2010).
B. Pasquini, M. Pincetti, S. Boffi, Phys. Rev. D 80, 014017 (2009).
A.T. Goritschnig, B. Pire, W. Schweiger, Phys. Rev. D 87, 014017 (2013).