Skip to main content
Log in

Single transverse spin asymmetries in semi-inclusive deep inelastic scattering in a spin-1 diquark model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The observed results for the azimuthal single spin asymmetries (SSAs) of the proton, measured in the semi-inclusive deep inelastic scattering (SIDIS), can be explained by the final-state interaction (FSI) from the gluon exchange between the outgoing quark and the target spectator system. SSAs require a phase difference between two amplitudes coupling the target with opposite spins to the same final state. We have used the model of light front wave functions (LFWFs) consisting of a spin- \( \frac{1}{2}\) system as a composite of a spin- \( \frac{1}{2}\) fermion and a spin-1 vector boson to estimate the SSAs. The implications of such a model have been investigated in detail by considering different coupling constants. The FSIs also produce a complex phase which can be included in the LFWFs to calculate the Sivers and Boer-Mulders distribution functions of the nucleon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sivers, Phys. Rev. D 41, 83 (1990)

    Article  ADS  Google Scholar 

  2. D. Sivers, Phys. Rev. D 43, 261 (1991)

    Article  ADS  Google Scholar 

  3. A. Airapetian et al., Phys. Rev. Lett. 84, 4047 (2000)

    Article  ADS  Google Scholar 

  4. A. Airapetian et al., Phys. Rev. D 64, 097101 (2000)

    Article  ADS  Google Scholar 

  5. A. Bravar, Nucl. Phys. B 79, 520 (1999)

    Article  Google Scholar 

  6. Compass Collaboration (C. Schill), arXiv:1107.0219 (2011)

  7. COMPASS Collaboration (A. Mieliech), Proc. Int. Conf. Transversity, 49 (2005)

  8. COMPASS Collaboration (H. Wollny), AIP Conf. Proc. 1149, 419 (2009)

    Article  ADS  Google Scholar 

  9. COMPASS Collaboration (A. Ferrero), Proc. Int. Conf. Transversity, 611 (2005)

  10. COMPASS Collaboration (T. Negrini), AIP Cof. Proc. 1149, 656 (2009)

    Article  ADS  Google Scholar 

  11. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 171801 (2004)

    Article  ADS  Google Scholar 

  12. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 101, 222001 (2008)

    Article  ADS  Google Scholar 

  13. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. D 86, 051101 (2012)

    Article  ADS  Google Scholar 

  14. J.C. Collins, Phys. Lett. B 536, 43 (2002)

    Article  ADS  Google Scholar 

  15. A. Bravar et al., Phys. Rev. Lett. 77, 2626 (1996)

    Article  ADS  Google Scholar 

  16. K. Heller, Proceedings of Spin 96, edited by C.W. de Jager, T.J. Ketel, P. Mulders (World Scientific, 1997) p. 23

  17. S.J. Brodsky, D.S. Hwang, I. Schmidt, Nucl. Phys. B 642, 344 (2002)

    Article  ADS  Google Scholar 

  18. S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530, 99 (2002)

    Article  ADS  Google Scholar 

  19. J. Ellis, D.S. Hwang, A. Kotzinian, Phys. Rev. D 80, 074033 (2009)

    Article  ADS  Google Scholar 

  20. S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 553, 223 (2003)

    Article  ADS  Google Scholar 

  21. M. Burkardt, D.S. Hwang, Phys. Rev. D 69, 074032 (2004)

    Article  ADS  Google Scholar 

  22. S.J. Brodsky, D.S. Hwang, Y.V. Kovchegov, I. Schmidt, M.D. Sievert, Phys. Rev. D 88, 014032 (2013)

    Article  ADS  Google Scholar 

  23. D. Boer, S.J. Brodsky, D.S. Hwang, Phys. Rev. D 67, 054003 (2003)

    Article  ADS  Google Scholar 

  24. M. Diehl, Phys. Rep. 388, 41 (2003)

    Article  ADS  Google Scholar 

  25. A.V. Belitsky, Phys. Rep. 418, 1 (2005)

    Article  ADS  Google Scholar 

  26. X. Ji, F. Yuan, Phys. Lett. B 543, 66 (2002)

    Article  ADS  Google Scholar 

  27. A. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B 656, 165 (2003)

    Article  ADS  MATH  Google Scholar 

  28. D. Boer, P.J. Mulders, F. Pijlman, Nucl. Phys. B 667, 201 (2003)

    Article  ADS  Google Scholar 

  29. S. Boffi, A.V. Efremov, B. Pasquini, P. Schweitzer, Phys. Rev. D 79, 094012 (2009)

    Article  ADS  Google Scholar 

  30. B. Pasquini, S. Boffi, A.V. Efremov, P. Schweitzer, AIP Conf. Proc. 1149, 471 (2009)

    Article  ADS  Google Scholar 

  31. B. Pasquini, S. Boffi, P. Schweitzer, Mod. Phys. Lett. A 24, 2903 (2009)

    Article  ADS  MATH  Google Scholar 

  32. F. Yuan, Phys. Lett. B 575, 45 (2003)

    Article  ADS  Google Scholar 

  33. S. Meissner, A. Metz, K. Goeke, Phys. Rev. D 76, 034002 (2007)

    Article  ADS  Google Scholar 

  34. B. Pasquini, S. Boffi, Phys. Lett. B 653, 23 (2007)

    Article  ADS  Google Scholar 

  35. B.U. Musch, Few-Body Syst. 52, 259 (2012)

    Article  ADS  Google Scholar 

  36. S.J. Brodsky, H.C. Pauli, S. Pinsky, Phys. Rep. 301, 299 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  37. S.J. Brodsky, M. Diehl, D.S. Hwang, Nucl. Phys. B 596, 99 (2001)

    Article  ADS  Google Scholar 

  38. S.J. Brodsky, D.S. Hwang, B.-Q. Ma, I. Schmidt, Nucl. Phys. B 593, 311 (2001)

    Article  ADS  MATH  Google Scholar 

  39. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  40. S.J. Brodsky, D. Chakrabarti, A. Harindranath, A. Mukherjee, J.P. Vary, Phys. Rev. D 75, 014003 (2007)

    Article  ADS  Google Scholar 

  41. H. Dahiya, A. Mukherjee, S. Ray, Phys. Rev. D 76, 034010 (2007)

    Article  ADS  Google Scholar 

  42. N. Kumar, H. Dahiya, Mod. Phys. Lett. A 29, 1450118 (2014)

    Article  ADS  Google Scholar 

  43. N. Kumar, H. Dahiya, Phys. Rev. D 90, 094030 (2014)

    Article  ADS  Google Scholar 

  44. D. Chakrabarti, R. Manohar, A. Mukherjee, Phys. Rev. D 79, 034006 (2009)

    Article  ADS  Google Scholar 

  45. D. Chakrabarti, A. Mukherjee, Phys. Rev. D 71, 014038 (2005)

    Article  ADS  Google Scholar 

  46. D. Chakrabarti, A. Mukherjee, Phys. Rev. D 72, 034013 (2005)

    Article  ADS  Google Scholar 

  47. Z.B. Kang, I. Vitev, H. Xing, Phys. Rev. D 87, 034024 (2013)

    Article  ADS  Google Scholar 

  48. S.J. Brodsky, A.H. Hoang, J.H. Kühn, T. Teubner, Phys. Lett. B 359, 355 (1995)

    Article  ADS  Google Scholar 

  49. M. Baldicchi, G.M. Prosperi, Phys. Rev. D 66, 074008 (2002)

    Article  ADS  Google Scholar 

  50. M. Baldicchi, G.M. Prosperi, AIP Conf. Proc. 756, 152 (2005)

    Article  ADS  Google Scholar 

  51. D.V. Shirkov, Phys. Part. Nucl. Lett. 5, 489 (2008)

    Article  Google Scholar 

  52. S.J. Brodsky, Acta Phys. Pol. B 36, 635 (2005)

    ADS  Google Scholar 

  53. P.E. Reimer, J. Phys.: Conf. Ser. 295, 012011 (2011)

    ADS  Google Scholar 

  54. K. Nakahara, AIP Conf. Proc. 1405, 179 (2011)

    Article  ADS  Google Scholar 

  55. D. Boer, P.J. Mulders, Phys. Rev. D 57, 5780 (1998)

    Article  ADS  Google Scholar 

  56. A.V. Efremov, K. Goeke, S. Menzel, A. Metz, P. Schweitzer, Phys. Lett. B 612, 233 (2005)

    Article  ADS  Google Scholar 

  57. M. Burkardt, Prog. Part. Nucl. Phys. 67, 260 (2012)

    Article  ADS  Google Scholar 

  58. D.S. Hwang, J. Kor. Phys. Soc. 62, 581 (2013)

    Article  ADS  Google Scholar 

  59. D. Boer, Phys. Lett. B 702, 242 (2011)

    Article  ADS  Google Scholar 

  60. J. Qiu, G. Sterman, Phys. Rev. Lett. 67, 2264 (1991)

    Article  ADS  Google Scholar 

  61. J. Qiu, G. Sterman, Nucl. Phys. B 378, 52 (1992)

    Article  ADS  Google Scholar 

  62. B. Ehrnsperger, A. Schäfer, W. Greiner, L. Mankiewicz, Phys. Lett. B 321, 121 (1994)

    Article  ADS  Google Scholar 

  63. Z. Lü, B.-Q. Ma, Nucl. Phys. A 741, 200 (2004)

    Article  ADS  Google Scholar 

  64. A. Courtoy, F. Fratini, S. Scopetta, V. Vento, Phys. Rev. D 78, 034002 (2008)

    Article  ADS  Google Scholar 

  65. Z.B. Kang, J.W. Qiu, Phys. Rev. D 79, 016003 (2009)

    Article  ADS  Google Scholar 

  66. Z.B. Kang, J.W. Qiu, H. Zhang, Phys. Rev. D 81, 114030 (2010)

    Article  ADS  Google Scholar 

  67. A. Bacchetta, U. D’Alesio, M. Diehl, C.A. Miller, Phys. Rev. D 70, 117504 (2004)

    Article  ADS  Google Scholar 

  68. A. Bacchetta, F. Conti, M. Radici, Phys. Rev. D 78, 074010 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harleen Dahiya.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Dahiya, H. Single transverse spin asymmetries in semi-inclusive deep inelastic scattering in a spin-1 diquark model. Eur. Phys. J. A 51, 51 (2015). https://doi.org/10.1140/epja/i2015-15051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15051-x

Keywords

Navigation