Skip to main content
Log in

Structure of the low-lying states of the odd-neutron nuclei with Z ≈ 100

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Theoretical investigations of the structure of the low-lying states of the nuclei with Z ≈ 100 play an important role in understanding the properties of nuclei belonging to the new region of the nuclide chart which are now available for the experimental study. We perform the calculations of the excitation energies and the wave functions of the low-lying states of the nuclei with Z ≈ 100. The quasiparticle-phonon model, which takes into account the interaction of quasiparticles with phonons of different multipolarities, is used as a basis for the calculations. The excitation energies and the quasiparticle-phonon structure of the low-lying states with excitation energies up to 1200 keV of the odd-neutron nuclei 245–251Cm, 249–255Cf, 249–259Fm, 253–259No and 257–261Rf are calculated. It is shown that the excitation of the phonons and the quasiparticle-phonon interaction play an important role in the description of the properties of the excited states of the nuclei with Z ≈ 100 with excitation energy exceeding 600 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.-D. Herzberg, P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008).

    Article  ADS  Google Scholar 

  2. F.P. Hessberger et al., Eur. Phys. J. A 22, 417 (2004).

    Article  ADS  Google Scholar 

  3. F.P. Hessberger et al., Eur. Phys. J. A 30, 561 (2006).

    Article  ADS  Google Scholar 

  4. F.P. Hessberger et al., Eur. Phys. J. A 12, 57 (2001).

    Article  ADS  Google Scholar 

  5. B. Streicher et al., Eur. Phys. J. A 45, 275 (2010).

    Article  ADS  Google Scholar 

  6. A. Chatillon et al., Eur. Phys. J. A 30, 397 (2006).

    Article  ADS  Google Scholar 

  7. F.P. Hessberger et al., Eur. Phys. J. A 26, 233 (2005).

    Article  ADS  Google Scholar 

  8. F.P. Hessberger et al., Eur. Phys. J. A 43, 175 (2010).

    Article  ADS  Google Scholar 

  9. S. Antalic et al., Eur. Phys. J. A 43, 35 (2010).

    Article  ADS  Google Scholar 

  10. S.K. Tandel et al., Phys. Rev. C 82, 041301 (2010).

    Article  ADS  Google Scholar 

  11. S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 737 (2000).

    Article  ADS  Google Scholar 

  12. Yu. Oganessian, J. Phys. G 34, R165 (2007).

    Article  ADS  Google Scholar 

  13. S.P. Ivanova, A.L. Komov, L.A. Malov, Phys. Part. Nucl. 7, 450 (1976).

    Google Scholar 

  14. V.G. Soloviev, Theory of Complex Nuclei (Pergamon Press, Oxford, 1976).

  15. V.G. Soloviev, A.V. Sushkov, N.Yu. Shirikova, Sov. J. Nucl. Phys. 54, 748 (1991).

    Google Scholar 

  16. F.A. Gareev, S.P. Ivanova, L.A. Malov, V.G. Soloviev, Nucl. Phys. A 171, 434 (1971).

    Article  Google Scholar 

  17. S.G. Nilsson, I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 1995).

  18. A. Parhomenko, A. Sobiczewski, Acta. Phys. Pol. B 35, 2447 (2004).

    ADS  Google Scholar 

  19. A. Parhomenko, A. Sobiczewski, Acta. Phys. Pol. B 36, 3115 (2005).

    ADS  Google Scholar 

  20. S. Cwiok, S. Hofmann, W. Nazarewicz, Nucl.Phys. A 573, 356 (1994).

    Article  ADS  Google Scholar 

  21. P. Möller, J.R. Nix, W.D. Myers, W. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  22. J. Maruhn, W. Greiner, Z. Phys. A 251, 431 (1972).

    Article  Google Scholar 

  23. G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 81, 024320 (2010).

    Article  ADS  Google Scholar 

  24. G.G. Adamian, N.V. Antonenko, S.N. Kuklin, B.N. Lu, L.A. Malov, S.G. Zhou, Phys. Rev. C 84, 024324 (2011).

    Article  ADS  Google Scholar 

  25. G.G. Adamian, N.V. Antonenko, W. Scheid, Acta Phys. Pol. B 40, 759 (2009).

    ADS  Google Scholar 

  26. L. Bonneau, P. Quentin, P. Möller, Phys. Rev. C 76, 024320 (2007).

    Article  ADS  Google Scholar 

  27. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  28. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).

    Article  ADS  Google Scholar 

  29. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005).

    Article  ADS  Google Scholar 

  30. J.Meng, H. Toki, S.G. Zhou, S.Q. Shang, W.H. Long, L.S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).

    Article  ADS  Google Scholar 

  31. X.T. He, Z.Z. Ren, S.X. Liu, E.G. Zhao, Nucl. Phys. A 817, 45 (2009).

    Article  ADS  Google Scholar 

  32. Z.H. Zhang, J.Y. Zeng, E.G.Zhao, S.G. Zhou, Phys. Rev. C 83, 011304 (2011).

    Article  ADS  Google Scholar 

  33. N.Yu. Shirikova, A.V. Sushkov, R.V. Jolos, Phys. Rev. C 88, 064319 (2013).

    Article  ADS  Google Scholar 

  34. V.G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics Publishing, Bristol and Philadelphia, 1992).

  35. H. Kucharek, P. Ring, Z. Phys. A 339, 23 (1991).

    Article  ADS  Google Scholar 

  36. H. Lenske, F. Fuchs, Phys. Lett. B 345, 355 (1995).

    Article  ADS  Google Scholar 

  37. M. Kortelainen et al., Phys. Rev. C 82, 024313 (2010).

    Article  ADS  Google Scholar 

  38. I. Ahmad, Phys. Scr. T 125, 78 (2006).

    Article  ADS  Google Scholar 

  39. I. Ahmad, R.R. Chasman, Phys. Rev. C 80, 064315 (2009).

    Article  ADS  Google Scholar 

  40. S. Cwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, W. Nazarewicz, Nucl. Phys. A 611, 211 (1996).

    Article  ADS  Google Scholar 

  41. A. Bohr, B.Mottelson, Nuclear Structure, Vol. 2 (Benjamin, 1975).

  42. V.A. Chepurnov, P.E. Nemirovsky, Nucl. Phys. A 49, 90 (1963).

    Article  Google Scholar 

  43. L. Grodzins, Phys. Lett. 2, 88 (1962).

    Article  ADS  Google Scholar 

  44. P. Reiter et al., Phys. Rev. Lett. 82, 509 (1999).

    Article  ADS  Google Scholar 

  45. S. Cwiok, P.-H. Heenen, W. Nazarewicz, Nature 433, 705 (2005).

    Article  ADS  Google Scholar 

  46. S.K. Patra, W. Greiner, R.K. Gupta, J. Phys. G: Nucl. Part. Phys. 26, L65 (2000).

    Article  ADS  Google Scholar 

  47. I. Ahmad et al., Phys. Rev. C 62, 064302 (2000).

    Article  ADS  Google Scholar 

  48. R.R. Chasman, I. Ahmad, A.M. Friedman, J.R. Erskine, Rev. Mod. Phys. 49, 833 (1977).

    Article  ADS  Google Scholar 

  49. Z. Patyk, A. Sobiczewski, Nucl. Phys. A 533, 132 (1991).

    Article  ADS  Google Scholar 

  50. R.V. Jolos, N.Yu. Shirikova, A.V. Sushkov, Phys. Rev. C 86, 044320 (2012).

    Article  ADS  Google Scholar 

  51. Y.S. Chen, Yang Sun, Zao-Chun-Gao, Phys. Rev. C 77, 061305(R) (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Shirikova.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirikova, N.Y., Sushkov, A.V., Malov, L.A. et al. Structure of the low-lying states of the odd-neutron nuclei with Z ≈ 100. Eur. Phys. J. A 51, 21 (2015). https://doi.org/10.1140/epja/i2015-15021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15021-4

Keywords

Navigation