Skip to main content
Log in

A new study of the 22Ne(p, γ)23Na reaction deep underground: Feasibility, setup and first observation of the 186 keV resonance

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The 22Ne(p,γ)23Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle is active in asymptotic giant branch stars as well as in novae and contributes to the nucleosythesis of neon and sodium isotopes. In order to reduce the uncertainties in the predicted nucleosynthesis yields, new experimental efforts to measure the 22Ne(p,γ)23Na cross section directly at the astrophysically relevant energies are needed. In the present work, a feasibility study for a 22Ne(p,γ)23Na experiment at the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator deep underground in the Gran Sasso laboratory, Italy, is reported. The ion-beam-induced γ-ray background has been studied. The feasibility study led to the first observation of the E p=186 keV resonance in a direct experiment. An experimental lower limit of 0.12 × 10−6 eV has been obtained for the resonance strength. Informed by the feasibility study, a dedicated experimental setup for the 22Ne(p,γ)23Na experiment has been developed. The new setup has been characterized by a study of the temperature and pressure profiles. The beam heating effect that reduces the effective neon gas density due to the heating by the incident proton beam has been studied using the resonance scan technique, and the size of this effect has been determined for a neon gas target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Carretta et al., Astron. Astrophys. 505, 117 (2009).

    Article  ADS  Google Scholar 

  2. R.G. Izzard, M. Lugaro, A.I. Karakas, C. Iliadis, M. van Raai, Astron. Astrophys. 466, 641 (2007).

    Article  ADS  Google Scholar 

  3. T. Decressin, G. Meynet, C. Charbonnel, N. Prantzos, S. Ekström, Astron. Astrophys. 464, 1029 (2007).

    Article  ADS  Google Scholar 

  4. A.L. Sallaska et al., Phys. Rev. Lett. 105, 152501 (2010).

    Article  ADS  Google Scholar 

  5. A.L. Sallaska et al., Phys. Rev. C 83, 034611 (2011).

    Article  ADS  Google Scholar 

  6. C.L. Doherty et al., Mon. Not. R. Astronom. Soc. 441, 582 (2014).

    Article  ADS  Google Scholar 

  7. K. Lundmark, Publ. Astron. Soc. Pacific 33, 225 (1921).

    Article  ADS  Google Scholar 

  8. J. José, M. Hernanz, Astrophys. J. 494, 680 (1998).

    Article  ADS  Google Scholar 

  9. C. Iliadis, A. Champagne, J. José, S. Starrfield, P. Tupper, Astrophys. J. Suppl. Ser. 142, 105 (2002).

    Article  ADS  Google Scholar 

  10. J. José, M. Hernanz, S. Amari, K. Lodders, E. Zinner, Astrophys. J. 612, 414 (2004).

    Article  ADS  Google Scholar 

  11. C. Rolfs, W. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988).

  12. R. Longland et al., Phys. Rev. C 81, 055804 (2010).

    Article  ADS  Google Scholar 

  13. J. Keinonen, M. Riihonen, A. Anttila, Phys. Rev. C 15, 579 (1977).

    Article  ADS  Google Scholar 

  14. J. Görres, C. Rolfs, P. Schmalbrock, H.P. Trautvetter, J. Keinonen, Nucl. Phys. A 385, 57 (1982).

    Article  ADS  Google Scholar 

  15. J.R. Powers, H.T. Fortune, R. Middleton, O. Hansen, Phys. Rev. C 4, 2030 (1971).

    Article  ADS  Google Scholar 

  16. S.E. Hale et al., Phys. Rev. C 65, 015801 (2001).

    Article  ADS  Google Scholar 

  17. C. Angulo et al., Nucl. Phys. A 656, 3 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Iliadis, R. Longland, A.E. Champagne, A. Coc, Nucl. Phys. A 841, 251 (2010).

    Article  ADS  Google Scholar 

  19. H. Costantini et al., Rep. Prog. Phys. 72, 086301 (2009).

    Article  ADS  Google Scholar 

  20. C. Broggini, D. Bemmerer, A. Guglielmetti, R. Menegazzo, Annu. Rev. Nucl. Part. Sci. 60, 53 (2010).

    Article  ADS  Google Scholar 

  21. D.A. Scott et al., Phys. Rev. Lett. 109, 202501 (2012).

    Article  ADS  Google Scholar 

  22. M. Anders et al., Phys. Rev. Lett. 113, 042501 (2014).

    Article  ADS  Google Scholar 

  23. A. Caciolli et al., Eur. Phys. J. A 39, 179 (2009).

    Article  ADS  Google Scholar 

  24. D. Bemmerer et al., Eur. Phys. J. A 24, 313 (2005).

    Article  ADS  Google Scholar 

  25. T. Szücs et al., Eur. Phys. J. A 44, 513 (2010).

    Article  ADS  Google Scholar 

  26. M. Anders et al., Eur. Phys. J. A 49, 28 (2013).

    Article  ADS  Google Scholar 

  27. R.B. Firestone, Nucl. Data Sheets 108, 1 (2007).

    Article  ADS  Google Scholar 

  28. C. Casella et al., Nucl. Instrum. Methods A 489, 160 (2002).

    Article  ADS  Google Scholar 

  29. A. Formicola et al., Nucl. Instrum. Methods A 507, 609 (2003).

    Article  ADS  Google Scholar 

  30. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods B 268, 1818 (2010).

    Article  ADS  Google Scholar 

  31. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003).

    Article  ADS  Google Scholar 

  32. M.-L. Menzel, Experimental Study of the 22Ne(p,γ)23Na Reaction and its Implications for Astrophysical Novae, Report HZDR-034 (2012) and Diploma Thesis, Technical University of Dresden (2012).

  33. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edition (John Wiley & Sons, 2002).

  34. J. Görres, K. Kettner, H. Kräwinkel, C. Rolfs, Nucl. Instrum. Methods 177, 295 (1980).

    Article  ADS  Google Scholar 

  35. D. Bemmerer et al., Nucl. Phys. A 779, 297 (2006).

    Article  ADS  Google Scholar 

  36. M. Marta et al., Nucl. Instrum. Methods A 569, 727 (2006).

    Article  ADS  Google Scholar 

  37. H.W. Becker et al., Z. Phys. A 343, 361 (1992).

    Article  ADS  Google Scholar 

  38. J. Görres et al., Nucl. Phys. A 408, 372 (1983).

    Article  ADS  Google Scholar 

  39. M. Jaeger et al., Phys. Rev. Lett. 87, 202501 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D. Bemmerer.

Additional information

Communicated by R. Krücken

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LUNA Collaboration., Cavanna, F., Depalo, R. et al. A new study of the 22Ne(p, γ)23Na reaction deep underground: Feasibility, setup and first observation of the 186 keV resonance. Eur. Phys. J. A 50, 179 (2014). https://doi.org/10.1140/epja/i2014-14179-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14179-5

Keywords

Navigation