Constraints on the universe as a numerical simulation

  • Silas R. Beane
  • Zohreh Davoudi
  • Martin J. Savage
Regular Article - Theoretical Physics

Abstract.

Observable consequences of the hypothesis that the observed universe is a numerical simulation performed on a space-time lattice or grid are explored. The simulation scenario is first motivated by extrapolating current trends in computational resource requirements for lattice QCD into the future. Using the historical development of lattice gauge theory technology as a guide, we assume that our universe is an early numerical simulation and investigate potentially observable consequences. Among the observables that are considered are the muon g - 2 and the current differences between determinations of \( \alpha\), but the most stringent bound on the inverse lattice spacing of the universe, \( b^{-1}\gtrsim 10^{11}\) GeV, is derived from the high-energy cut off of the cosmic ray spectrum. The numerical simulation scenario could reveal itself in the distributions of the highest-energy cosmic rays exhibiting a degree of rotational symmetry breaking that reflects the structure of the underlying lattice.

References

  1. 1.
    N. Bostrom, Philos. Q. 53, 243 (2003)CrossRefGoogle Scholar
  2. 2.
    A.S. Kronfeld, arXiv:1209.3468 [physics.hist-ph] (2012)
  3. 3.
    Z. Fodor, C. Hoelbling, Rev. Mod. Phys. 84, 449 (2012) arXiv:1203.4789 [hep-lat]CrossRefADSGoogle Scholar
  4. 4.
    S.R. Beane, arXiv:1206.5219 [hep-lat] (2012)
  5. 5.
    T. Yamazaki, arXiv:1207.4277 [hep-lat]
  6. 6.
    HAL QCD Collaboration (S. Aoki), arXiv:1206.5088 [hep-lat] (2012)
  7. 7.
    S. Lloyd, Nature 406, 1047 (1999) arXiv:quant-ph/9908043 CrossRefADSGoogle Scholar
  8. 8.
    S. Lloyd, arXiv:quant-ph/0501135 [quant-ph] (2005)
  9. 9.
    K. Zuse, Rechnender Raum (Friedrich Vieweg and Sohn, Braunschweig, 1969)Google Scholar
  10. 10.
    E. Fredkin, Physica D 45, 254 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  11. 11.
    S. Wolfram, A New Kind of Science (Wolfram Media, 2002) p. 1197Google Scholar
  12. 12.
    G.'t Hooft, arXiv:1205.4107 [quant-ph] (2012)
  13. 13.
    J. Church, Am. J. Math. 58, 435 (1936)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Turing, Proc. London Math. Soc. Ser. 2 442, 230 (1936)Google Scholar
  15. 15.
    D. Deutsch, Proc. R. Soc. London A 400, 97 (1985)MathSciNetCrossRefMATHADSGoogle Scholar
  16. 16.
    J. Barrow, Living in a Simulated Universe, edited by B. Carr (Cambridge University Press, 2008) Chapt. 27 Universe or Multiverse? pp. 481--486Google Scholar
  17. 17.
  18. 18.
    J.B. Kogut, L. Susskind, Phys. Rev. D 11, 395 (1975)CrossRefADSGoogle Scholar
  19. 19.
  20. 20.
    K.G. Wilson, Phys. Rev. D 10, 2445 (1974)CrossRefADSGoogle Scholar
  21. 21.
    B. Sheikholeslami, R. Wohlert, Nucl. Phys. B 259, 572 (1985)CrossRefADSGoogle Scholar
  22. 22.
    Hadron Spectrum Collaboration (H.-W. Lin et al.), Phys. Rev. D 79, 034502 (2009) arXiv:0810.3588 [hep-lat]CrossRefGoogle Scholar
  23. 23.
    V. Vinge, Science and Engineering in the Era of Cyberspace, edited by G.A. Landis (NASA Publication, 1993) CP-10129, Vision-21: Interdisciplinary, 115Google Scholar
  24. 24.
    R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology (Penguin Non-Classics, 2006) ISBN 0143037889Google Scholar
  25. 25.
    S.R. Coleman, S.L. Glashow, Phys. Rev. D 59, 116008 (1999) arXiv:hep-ph/9812418 CrossRefADSGoogle Scholar
  26. 26.
    O. Gagnon, G.D. Moore, Phys. Rev. D 70, 065002 (2004) arXiv:hep-ph/0404196 [hep-ph]CrossRefADSGoogle Scholar
  27. 27.
    J. Collins et al., Phys. Rev. Lett. 93, 191301 (2004) arXiv:gr-qc/0403053 [gr-qc]MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    S. Kachru et al., Phys. Rev. D 68, 046005 (2003) arXiv:hep-th/0301240 [hep-th]MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    L. Susskind, arXiv:hep-th/0302219 [hep-th] (2003)
  30. 30.
    M.R. Douglas, JHEP 05, 046 (2003) arXiv:hep-th/0303194 [hep-th]CrossRefADSGoogle Scholar
  31. 31.
    T. Appelquist, arXiv:1204.6000 [hep-ph] (2012)
  32. 32.
    S. Hsu, A. Zee, Mod. Phys. Lett. A 21, 1495 (2006) arXiv:physics/0510102 [physics]CrossRefADSGoogle Scholar
  33. 33.
    K. Symanzik, Nucl. Phys. B 226, 187 (1983)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    K. Symanzik, Nucl. Phys. B 226, 205 (1983)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    G. Aslanyan, A.V. Manohar, JCAP 06, 003 (2012) arXiv:1104.0015 [astro-ph.CO]CrossRefADSGoogle Scholar
  36. 36.
    P. Jizba et al., Phys. Rev. D 81, 084030 (2010) arXiv:0912.2253 [hep-th]CrossRefADSGoogle Scholar
  37. 37.
    D.B. Kaplan, S. Sun, Phys. Rev. Lett. 108, 181807 (2012) arXiv:1112.0302 [hep-ph]CrossRefADSGoogle Scholar
  38. 38.
    M. Lüscher, P. Weisz, Commun. Math. Phys. 97, 59 (1985)CrossRefMATHADSGoogle Scholar
  39. 39.
    P.J. Mohr, arXiv:1203.5425 [physics.atom-ph] (2012)
  40. 40.
    R. Bouchendira et al., Phys. Rev. Lett. 106, 080801 (2011)CrossRefADSGoogle Scholar
  41. 41.
    D. Colladay, V.A. Kostelecký, Phys. Rev. D 55, 6760 (1997)CrossRefADSGoogle Scholar
  42. 42.
    R.C. Myers, M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003) arXiv:hep-ph/0301124 [hep-ph]MathSciNetCrossRefADSGoogle Scholar
  43. 43.
    S.M. Carroll et al., Phys. Rev. D 41, 1231 (1990)CrossRefADSGoogle Scholar
  44. 44.
    P. Laurent et al., Phys. Rev. D 83, 121301 (2011) arXiv:1106.1068 [astro-ph.HE]CrossRefADSGoogle Scholar
  45. 45.
    L. Maccione et al., JCAP 04, 022 (2009) arXiv:0902.1756 [astro-ph.HE]CrossRefADSGoogle Scholar
  46. 46.
    I. Motie, S.-S. Xue, Int. J. Mod. Phys. A 27, 1250104 (2012) arXiv:1206.0709 [hep-ph]CrossRefADSGoogle Scholar
  47. 47.
    S.-S. Xue, Phys. Lett. B 706, 213 (2011) arXiv:1110.1317 [hep-ph]CrossRefADSGoogle Scholar
  48. 48.
    OPERA Collaboration (T. Adam), arXiv:1109.4897 [hep-ex] (2011)
  49. 49.
    S.R. Coleman, S.L. Glashow, Phys. Lett. B 405, 149 (1997) arXiv:hep-ph/9703240 [hep-ph]CrossRefGoogle Scholar
  50. 50.
    K. Greisen, Phys. Rev. Lett. 16, 748 (1966)CrossRefADSGoogle Scholar
  51. 51.
    G. Zatsepin, V. Kuzmin, JETP Lett. 4, 78 (1966)ADSGoogle Scholar
  52. 52.
    Pierre Auger Collaboration (J. Abraham et al.), Phys. Lett. B 685, 239 (2010) arXiv:1002.1975 [astro-ph.HE]CrossRefADSGoogle Scholar
  53. 53.
    HiRes Collaboration (P. Sokolsky et al.), PoS ICHEP2010, 444 (2010) arXiv:1010.2690 [astro-ph.HE]Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Silas R. Beane
    • 1
    • 2
  • Zohreh Davoudi
    • 3
  • Martin J. Savage
    • 3
  1. 1.Institute for Nuclear TheorySeattleUSA
  2. 2.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)Universität BonnBonnGermany
  3. 3.Department of PhysicsUniversity of WashingtonSeattleUSA

Personalised recommendations