Skip to main content

Advertisement

Log in

Microscopic description of fission in neutron-rich plutonium isotopes with the Gogny-D1M energy density functional

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The most recent parametrization D1M of the Gogny energy density functional is used to describe fission in the isotopes 232-280Pu . We resort to the methodology introduced in our previous studies (Phys. Rev. C 88, 054325 (2013) and Phys. Rev. C 89, 054310 (2014)) to compute the fission paths, collective masses and zero point quantum corrections within the Hartree-Fock-Bogoliubov framework. The systematics of the spontaneous fission half-lives t SF , masses and charges of the fragments in plutonium isotopes is analyzed and compared with available experimental data. We also pay attention to isomeric states, the deformation properties of the fragments as well as to the competition between the spontaneous fission and α-decay modes. The impact of pairing correlations on the predicted t SF values is demonstrated with the help of calculations for 232–280Pu, in which the pairing strengths of the Gogny-D1M energy density functional are modified by 5% and 10%, respectively. We further validate the use of the D1M parametrization through the discussion of the half-lives in 242–262Fm. Our calculations corroborate that, though the uncertainties in the absolute values of physical observables are large, the Gogny-D1M Hartree-Fock-Bogoliubov framework still reproduces the trends with mass and/or neutron numbers and therefore represents a reasonable starting point to describe fission in heavy nuclear systems from a microscopic point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Specht, Rev. Mod. Phys. 46, 773 (1974)..

    Article  ADS  Google Scholar 

  2. S. Björnholm, J.E. Lynn, Rev. Mod. Phys. 52, 725 (1980).

    Article  ADS  Google Scholar 

  3. C. Wagemans, The Nuclear Fission Process (CRC Press, Boca Raton, 1991).

  4. H.J. Krappe, K. Pomorski, Theory of Nuclear Fission, in Lecture Notes in Physics, Vol. 838 (2012).

  5. P. Möller, A. Iwamoto, Phys. Rev. C 61, 047602 (2000).

    Article  ADS  Google Scholar 

  6. P. Möller, D.G. Madlan, A.J. Sierk, A. Iwamoto, Nature 409, 785 (2001).

    Article  ADS  Google Scholar 

  7. B. Singh, R. Zywina, R. Firestone, Nucl. Data Sheets 97, 241 (2002).

    Article  ADS  Google Scholar 

  8. V.V. Pashkevich, Nucl. Phys. A 169, 275 (1971).

    Article  ADS  Google Scholar 

  9. P. Möller, Nucl. Phys. A 192, 529 (1972).

    Article  ADS  Google Scholar 

  10. M. Kowal, J. Skalski, Phys. Rev. C 85, 061302 (2012).

    Article  ADS  Google Scholar 

  11. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 502, 85 (1989).

    Article  ADS  Google Scholar 

  12. K. Rutz, J. Marhun, P.-G. Reinhard, W. Greiner, Nucl. Phys. A 590, 680 (1995).

    Article  ADS  Google Scholar 

  13. S. Ćwiok, W. Nazarewicz, J. Saladin, W. Plóciennik, A. Johnson, Phys. Lett. B 322, 304 (1994).

    Article  ADS  Google Scholar 

  14. R. Bengtsson, I. Ragnarsson, S. Aberg, A. Gyurkovich, A. Sobiczewski, K. Pomorski, Nucl. Phys. A 473, 77 (1987).

    Article  ADS  Google Scholar 

  15. J.-P. Delaroche, M. Girod, H. Goutte, J. Libert, Nucl. Phys. A 771, 103 (2006).

    Article  ADS  Google Scholar 

  16. J.D. McDonnell, W. Nazarewicz, J.A. Sheikh, Phys. Rev. C 87, 054327 (2013).

    Article  ADS  Google Scholar 

  17. S.A. Giuliani, L.M Robledo, Phys. Rev. C 88, 054325 (2013).

    Article  ADS  Google Scholar 

  18. R. Rodríguez-Guzmán, L.M. Robledo, Phys. Rev. C 89, 054310 (2014).

    Article  ADS  Google Scholar 

  19. J.W. Negele, Nucl. Phys. A 502, 371 (1989).

    Article  ADS  Google Scholar 

  20. J. Skalski, Phys. Rev. C 77, 064610 (2008).

    Article  ADS  Google Scholar 

  21. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).

  22. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  23. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 23c (1984).

    Article  ADS  Google Scholar 

  24. V. Martin, L.M. Robledo, Int. J. Mod. Phys. E 18, 788 (2009).

    Article  ADS  Google Scholar 

  25. N. Dubray, H. Goutte, J.-P. Delaroche, Phys. Rev. C 77, 014310 (2008).

    Article  ADS  Google Scholar 

  26. S. Pérez-Martín, L.M. Robledo, Int. J. Mod. Phys. E 18, 861 (2009).

    Article  ADS  Google Scholar 

  27. W. Younes, D. Gogny, Phys. Rev. C 80, 054313 (2009).

    Article  ADS  Google Scholar 

  28. M. Warda, J.L. Egido, L.M. Robledo, K. Pomorski, Phys. Rev. C 66, 014310 (2002).

    Article  ADS  Google Scholar 

  29. M. Warda, J.L. Egido, Phys. Rev. C 86, 014322 (2012).

    Article  ADS  Google Scholar 

  30. N. Nikolov, N. Schunck, W. Nazarewicz, M. Bender, J. Pei, Phys. Rev. C 83, 034305 (2011).

    Article  ADS  Google Scholar 

  31. J. Erler, K. Langanke, H.P. Loens, G. Martínez-Pinedo, P.-G. Reinhard, Phys. Rev. C 85, 025802 (2012).

    Article  ADS  Google Scholar 

  32. A. Baran, K. Pomorski, A. Lukasiak, A. Sobiczewski, Nucl. Phys. A 361, 83 (1981).

    Article  ADS  Google Scholar 

  33. S. Ćwiok, P.-H. Heenen, W. Nazarewicz, Nature 433, 705 (2005).

    Article  ADS  Google Scholar 

  34. H. Abusara, A.V. Afanasjev, P. Ring, Phys. Rev. C 82, 044303 (2010).

    Article  ADS  Google Scholar 

  35. H. Abusara, A.V. Afanasjev, P. Ring, Phys. Rev. C 85, 024314 (2012).

    Article  ADS  Google Scholar 

  36. B.-N. Lu, E.-G. Zhao, S.-G. Zhou, Phys. Rev. C 85, 011301 (2012).

    Article  ADS  Google Scholar 

  37. S. Karatzikos, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Lett. B 689, 72 (2010).

    Article  ADS  Google Scholar 

  38. A. Sobiczewski, K. Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007).

    Article  ADS  Google Scholar 

  39. R. Julin, Nucl. Phys. A 834, 15c (2010).

    Article  ADS  Google Scholar 

  40. Yu.Ts. Oganessian, F.Sh. Abdullin, S.N. Dmitriev, J.M. Gostic, J.H. Hamilton, R.A. Henderson, M.G. Itkis, K.J. Moody, A.N. Polyakov, A.V. Ramayya, J.B. Roberto, K.P. Rykaczewski, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.A. Stoyer, V.G. Subbotin, A.M. Sukhov, Yu.S. Tsyganov, V.K. Utyonkov, A.A. Voinov, G.K. Vostokin, Phys. Rev. Lett. 108, 022502 (2012).

    Article  ADS  Google Scholar 

  41. H. Haba, D. Kaji, H. Kikunaga, Y. Kudou, K. Morimoto, K. Morita, K. Ozeki, T. Sumita, A. Yoneda, Y. Kasamatsu, Y. Komori, K. Ooe, A. Shinohara, Phys. Rev. C 83, 034602 (2011).

    Article  ADS  Google Scholar 

  42. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007).

    Article  ADS  Google Scholar 

  43. R. Capote et al., Nucl. Data Sheets 110, 3107 (2009).

    Article  ADS  Google Scholar 

  44. N.E. Holden, D.C. Hoffman, Pure Appl. Chem. 72, 1525 (2000).

    Article  Google Scholar 

  45. L. Dematté, C. Wagemans, R. Barthélémy, R. Dhont, A. Deruytter, Nucl. Phys. A 617, 331 (1997).

    Article  ADS  Google Scholar 

  46. D.C. Hoffman, M.M. Hoffman, Annu. Rev. Nucl. Sci. 24, 151 (1974).

    Article  ADS  Google Scholar 

  47. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980).

    Article  ADS  Google Scholar 

  48. F. Chappert, M. Girod, S. Hilaire, Phys. Lett. B 668, 420 (2008).

    Article  ADS  Google Scholar 

  49. S. Goriely, S. Hilaire, M. Girod, S. Péru, Phys. Rev. Lett. 102, 242501 (2009).

    Article  ADS  Google Scholar 

  50. R. Rodríguez-Guzmán, L.M. Robledo, P. Sarriguren, Phys. Rev. C 86, 034336 (2012).

    Article  ADS  Google Scholar 

  51. L.M. Robledo, R. Rodríguez-Guzmán, J. Phys. G: Nucl. Part. Phys. 39, 105103 (2012).

    Article  ADS  Google Scholar 

  52. R. Rodríguez-Guzmán, L.M. Robledo, P. Sarriguren, J.E. García-Ramos, Phys. Rev. C 81, 024310 (2010).

    Article  ADS  Google Scholar 

  53. R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, S. Perez-Martin, Phys. Lett. B 691, 202 (2010).

    Article  ADS  Google Scholar 

  54. L.M. Robledo, R. Rodríguez-Guzmán, P. Sarriguren, J. Phys. G: Nucl. Part. Phys. 36, 115104 (2009).

    Article  ADS  Google Scholar 

  55. R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, Phys. Rev. C 82, 061302(R) (2010).

    Article  ADS  Google Scholar 

  56. R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, Phys. Rev. C 83, 044307 (2011).

    Article  ADS  Google Scholar 

  57. M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  58. J.F. Berstch, H. Flocard, Phys. Rev. C 43, 2200 (1991).

    Article  ADS  Google Scholar 

  59. L.M. Robledo, G.F. Berstch, Phys. Rev. C 84, 014312 (2011).

    Article  ADS  Google Scholar 

  60. C. Titin-Schnaider, Ph. Quentin, Phys. Lett. B 49, 213 (1974).

    Article  ADS  Google Scholar 

  61. M. Anguiano, J.L. Egido, L.M. Robledo, Nucl. Phys. A 683, 227 (2001).

    Article  MATH  ADS  Google Scholar 

  62. N. Dubray, D. Regnier, arXiv:nucl-th/1112.4196 (2012).

  63. M. Girod, B. Grammaticos, Nucl. Phys. A 330, 40 (1979).

    Article  ADS  Google Scholar 

  64. M.J. Giannoni, P. Quentin, Phys. Rev. C 21, 2060 (1980).

    Article  ADS  Google Scholar 

  65. M.J. Giannoni, P. Quentin, Phys. Rev. C 21, 2076 (1980).

    Article  ADS  Google Scholar 

  66. J. Libert, M. Girod, J.P. Delaroche, Phys. Rev. C 60, 054301 (1999).

    Article  ADS  Google Scholar 

  67. R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Phys. Lett. B 474, 15 (2000).

    Article  ADS  Google Scholar 

  68. R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Phys. Rev. C 62, 054308 (2000).

    Article  ADS  Google Scholar 

  69. J.L. Egido, L.M. Robledo, Lect. Notes Phys. 641, 269 (2004).

    Article  ADS  Google Scholar 

  70. R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Nucl. Phys. A 709, 201 (2002).

    Article  ADS  Google Scholar 

  71. A. Baran, Phys. Lett. B 76, 8 (1978).

    Article  ADS  Google Scholar 

  72. A. Baran, J.A. Sheikh, J. Dobaczewski, W. Nazarewicz, A. Staszczak, Phys. Rev. C 84, 054321 (2011).

    Article  ADS  Google Scholar 

  73. T. Dong, Z. Ren, Eur. Phys. J. A 26, 69 (2005).

    Article  ADS  Google Scholar 

  74. S. Hilaire, M. Girod, Eur. Phys. J. A 33, 237 (2007).

    Article  ADS  Google Scholar 

  75. A. Staszczak, A. Baran, J. Dobaczewski, W. Nazarewicz, Phys. Rev. C 80, 014309 (2009).

    Article  ADS  Google Scholar 

  76. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 58, 2126 (1998).

    Article  ADS  Google Scholar 

  77. N. Nenoff, P. Bringel, A. Bürger, S. Chmel, S. Dababneh, M. Heil, H. Hübel, F. Käppeler, A. Neusser-Neffgen, R. Plag, Eur. Phys. J. A 32, 165 (2007).

    Article  ADS  Google Scholar 

  78. M. Piessens, E. Jacobs, S. Pommé, D.D. Frenne, Nucl. Phys. A 556, 88 (1993).

    Article  ADS  Google Scholar 

  79. G.M. Ter-Akopian, J.H. Hamilton, Yu.Ts. Oganessian, A.V. Daniel, J. Kormicki, A.V. Ramayya, G.S. Popeko, B.R.S. Babu, Q.-H. Lu, K. Butler-Moore, W.-C. Ma, S. Ćwiok, W. Nazarewicz, J.K. Deng, D. Shi, J. Kliman, M. Morhac, J.D. Cole, R. Aryaeinejad, N.R. Johnson, I.Y. Lee, F.K. McGowan, J.X. Saladin, Phys. Rev. Lett. 77, 32 (1996).

    Article  ADS  Google Scholar 

  80. J.-P. Blaizot, G. Ripka, Quantum Theory of Finite Fermi Systems (The MIT Press, Cambridge, 1985).

  81. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976).

    Article  ADS  Google Scholar 

  82. H. Goutte, J.F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71, 024316 (2005).

    Article  ADS  Google Scholar 

  83. S. Goriely, J.-L. Sida, J.-F. Lemaitre, S. Panebianco, N. Dubray, S. Hilare, A. Bauswein, H.-T. Janka, arXiv:astro-ph.SR/1311.5897 (2013).

  84. R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Phys. Rev. C 69, 054319 (2004).

    Article  ADS  Google Scholar 

  85. A. Mamdouth, J.M. Pearson, M. Rayet, F. Tondeur, Nucl. Phys. A 679, 337 (2001).

    Article  ADS  Google Scholar 

  86. K.-H. Schmidt et al., Nucl. Phys. A 665, 221 (2000).

    Article  ADS  Google Scholar 

  87. J. Sadhukhan, K. Mazurek, A. Baran, J. Dobaczewski, W. Nazarewicz, J.A. Sheikh, Phys. Rev. C 88, 064314 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Robledo.

Additional information

Communicated by A. Ramos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrıguez-Guzmán, R., Robledo, L.M. Microscopic description of fission in neutron-rich plutonium isotopes with the Gogny-D1M energy density functional. Eur. Phys. J. A 50, 142 (2014). https://doi.org/10.1140/epja/i2014-14142-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14142-6

Keywords

Navigation