Advertisement

Fine structure in the alpha decay of 224 U

  • A. Lopez-MartensEmail author
  • K. Hauschild
  • K. Rezynkina
  • O. Dorvaux
  • B. Gall
  • F. Déchery
  • H. Faure
  • A. V. Yeremin
  • M. L. Chelnokov
  • V. I. Chepigin
  • A. V. Isaev
  • I. N. Izosimov
  • D. E. Katrasev
  • A. N. Kuznetsov
  • A. A. Kuznetsova
  • O. N. Malyshev
  • A. G. Popeko
  • E. A. Sokol
  • A. I. Svirikhin
  • J. Piot
  • J. Rubert
Regular Article - Experimental Physics

Abstract.

224U nuclei were populated in fusion-evaporation reactions using a 206Pb target and an intense 22Ne beam. Fusion-evaporation residues were separated by the new separator SHELS at the FLNR, Dubna and implanted into a large-area double-sided silicon strip detector. Position- and time-correlated alpha decays were used to identify evaporation residues. A new \( \alpha\)-decay line at 8095(11) keV was observed in this work and assigned as the decay from 224U to the first excited 2+ in the daughter nucleus 220Th. Coincident photons were also observed allowing to unambiguously determine the excitation energy of the first excited 2+ state in 220Th to be 386.5(1) keV and not 373.3(1)keV as previously reported. The half-life of 224U was measured to be 396(17)μs.

Keywords

Decay Energy Hindrance Factor 206Pb Target Coincident Photon U400 Cyclotron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Yeremin et al., Nucl. Instr. Meth. B 266, 4137 (4137)CrossRefGoogle Scholar
  2. 2.
    A. Yeremin, submitted to PEPAN Lett. (2014)Google Scholar
  3. 3.
    O.N. Malyshev et al., Nucl. Instr. and Meth. A 440, 86 (2000)CrossRefADSGoogle Scholar
  4. 4.
    O.N. Malyshev et al., Nucl. Instr. and Meth. A 516, 529 (2004)CrossRefADSGoogle Scholar
  5. 5.
    A.N. Andreyev et al., Z. Phys. A 338, 363 (1991)CrossRefADSGoogle Scholar
  6. 6.
    K.S. Toth et al., Phys. Rev. C 45, 856 (1992)CrossRefADSGoogle Scholar
  7. 7.
    Evaluated Nuclear Structure Data File, http://www.nndc.bnl.gov/ensdf
  8. 8.
    A. Lopez-Martens et al., Eur. Phys. J. A 32, 245 (2007)CrossRefADSGoogle Scholar
  9. 9.
    Y.A. Akovali, Nucl. Data Sheets 100, 141 (2003)CrossRefADSGoogle Scholar
  10. 10.
    A.N. Andreyev et al., Z. Phys. A 337, 229 (1990)ADSGoogle Scholar
  11. 11.
    P. Kuusiniemi, Act. Phys. Pol. B 32, 1009 (2001)Google Scholar
  12. 12.
    K. Rezynkina, to be published in Eur. Phys. J. AGoogle Scholar
  13. 13.
    P.T. Greenlees et al., Eur. Phys. J. A 6, 269 (1999)CrossRefADSGoogle Scholar
  14. 14.
    W. Bonin et al., Z. Phys. A 322, 53 (1985)CrossRefADSGoogle Scholar
  15. 15.
    W. Reviol et al., Phys. Rev. C 74, 044305 (2006)CrossRefADSGoogle Scholar
  16. 16.
    M.A. Preston, Phys. Rev. 71, 865 (1947)CrossRefzbMATHADSGoogle Scholar
  17. 17.
    D. Buscurescu, N.V. Zamfir, Phys. Rev C 86, 067306 (2012)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Lopez-Martens
    • 1
    Email author
  • K. Hauschild
    • 1
  • K. Rezynkina
    • 1
  • O. Dorvaux
    • 2
  • B. Gall
    • 2
  • F. Déchery
    • 2
  • H. Faure
    • 2
  • A. V. Yeremin
    • 3
  • M. L. Chelnokov
    • 3
  • V. I. Chepigin
    • 3
  • A. V. Isaev
    • 3
  • I. N. Izosimov
    • 3
  • D. E. Katrasev
    • 3
  • A. N. Kuznetsov
    • 3
  • A. A. Kuznetsova
    • 3
  • O. N. Malyshev
    • 3
  • A. G. Popeko
    • 3
  • E. A. Sokol
    • 3
  • A. I. Svirikhin
    • 3
  • J. Piot
    • 4
  • J. Rubert
    • 2
    • 5
  1. 1.CSNSM, Université Paris SudCNRS-IN2P3OrsayFrance
  2. 2.IPHC, Université de StrasbourgCNRS-IN2P3StrasbourgFrance
  3. 3.FLNRJINRDubnaRussia
  4. 4.GANIL, CEA-DSMCNRS-IN2P3CaenFrance
  5. 5.LPSC, Université Grenoble-AlpesCNRS-IN2P3GrenobleFrance

Personalised recommendations