Mean field based calculations with the Gogny force: Some theoretical tools to explore the nuclear structure

Review

Abstract

We present a review of several works using the finite-range Gogny interaction in mean field approaches and beyond to explore the most striking nuclear structure features. Shell evolution along the N = 16 , 20, 28, 40 isotopic chains is investigated. The static deformation obtained in the mean field description are shown to be often in disagreement with the one experimentally determined. Dynamics is addressed in a GCM-like method, including rotational degrees of freedom, namely the five-dimension collective Hamiltonian (5DCH). This framework allows the description of the low-energy collective excitations. Nevertheless, some data cannot be reproduced with the collective Hamiltonian approach. Thus the QRPA formalism is introduced and used to simultaneously describe high- and low-energy spectroscopy as well as collective and individual excitations. After the description of giant resonances in doubly magic exotic nuclei, the role of the intrinsic deformation in giant resonances is presented. The appearance of low-energy dipole resonances in light nuclei is also discussed. In particular the isoscalar or isovector nature of Pygmy states is debated. Then, the first microscopic fully coherent description of the multipole spectrum of heavy deformed nucleus 238U is presented. Finally, a comparison of the low-energy spectrum obtained within the two extensions of the static mean field, namely QRPA and 5DCH, is performed for 2+ states in N = 16 isotones, nickel and tin isotopes. For the first time the different static and dynamic factors involved in the generation of the 2+ states in the nickel isotopic chain, from drip line to drip line, can be analysed in only one set of coherent approaches, free of adjustable parameters, using the same two-body interaction D1S and the resulting HFB mean field.

References

  1. 1.
    P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data. Nucl. Data Tables 59, 185 (1985).Google Scholar
  2. 2.
    P. Möller, J.R. Nix, K.-L.Kratz, At. Data. Nucl. Data Tables 66, 131 (1997).ADSGoogle Scholar
  3. 3.
    M. Samyn et al., Nucl. Phys. A 700, 142 (2002).ADSGoogle Scholar
  4. 4.
    S. Goriely et al., Phys. Rev. C 66, 024326 (2002).ADSGoogle Scholar
  5. 5.
    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).ADSGoogle Scholar
  6. 6.
    M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev C 78, 054302 (2008).ADSGoogle Scholar
  7. 7.
    M. Bender, P.-H. Heenen, Phys. Rev. C 83, 064319 (2011).ADSGoogle Scholar
  8. 8.
    S. Goriely, S. Hilaire, M. Girod, S. Péru, Phys. Rev. Lett. 102, 242501 (2009).ADSGoogle Scholar
  9. 9.
    J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980).ADSGoogle Scholar
  10. 10.
    J.F. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991).ADSMATHGoogle Scholar
  11. 11.
    J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 502, 85c (1989).ADSGoogle Scholar
  12. 12.
    J.W. Negele, Phys. Rev. C 1, 1260 (1970).ADSGoogle Scholar
  13. 13.
    J.W. Negele, D. Vautherin, Phys. Rev. C 5, 1472 (1972).ADSGoogle Scholar
  14. 14.
    D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972).ADSGoogle Scholar
  15. 15.
    D. Vautherin, Phys. Rev. C 7, 296 (1973).ADSGoogle Scholar
  16. 16.
    D. Gogny, in Proceedings of the International Conference on Nuclear Physics, Munich, 1973, edited by J. de Boer, H.J. Mang (North-Holland, Amsterdam, 1974) p. 48.Google Scholar
  17. 17.
    D. Gogny, Nucl. Phys. A 237, 399 (1975).ADSMathSciNetGoogle Scholar
  18. 18.
    L. Gaudefroy et al., Phys. Rev. C 80, 064313 (2009).ADSGoogle Scholar
  19. 19.
    M. Anguiano, J.-L. Egido, L.-M. Robledo, Nucl. Phys. A 696, 467 (2001).ADSMATHGoogle Scholar
  20. 20.
    R. Rodriguez-Guzman, J.L. Egido, L.M. Robledo, Nucl. Phys. A 709, 201 (2002).ADSGoogle Scholar
  21. 21.
    T.R. Rodriguez, J.L. Egido, Phys. Rev. C 81, 064323 (2010).ADSGoogle Scholar
  22. 22.
    Tomás R. Rodrígeuz, J.-L. Egido, Phys. Rev. C 84, 051307 (R) (2011).ADSGoogle Scholar
  23. 23.
    M. Girod, B. Grammaticos, Phys. Rev. C 27, 2317 (1983).ADSGoogle Scholar
  24. 24.
    J.-P. Delaroche et al., Phys. Rev. C 81, 014303 (2010).ADSGoogle Scholar
  25. 25.
    S. Péru, M. Girod, J.-F. Berger, Eur. Phys. J. A 9, 35 (2000).ADSGoogle Scholar
  26. 26.
    J.P. Blaizot, J.F. Berger, J. Dechargé, M. Girod, Nucl. Phys. A 591, 435 (1995).ADSGoogle Scholar
  27. 27.
    J. Dechargé, J.-F. Berger, K. Dietrich, M.S. Weiss, Phys. Lett. B 451, 275 (1999).ADSGoogle Scholar
  28. 28.
    J. Dechargé, J.-F. Berger, M. Girod, K. Dietrich, Nucl. Phys. A 716, 55 (2003).ADSGoogle Scholar
  29. 29.
    J.-F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 23c (1984).ADSGoogle Scholar
  30. 30.
    H. Goutte, J.-F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71, 024316 (2005).ADSGoogle Scholar
  31. 31.
    J.L. Egido, L.M. Robledo, Nucl. Phys. A 524, 65 (1991).ADSGoogle Scholar
  32. 32.
    E. Garrote, J.L. Egido, L.M. Robledo, Phys. Rev. Lett. 80, 4398 (1998).ADSGoogle Scholar
  33. 33.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New-York, 1980).Google Scholar
  34. 34.
    M. Bender, P.-H. Heenen, Phys. Rev. C 78, 024309 (2008).ADSGoogle Scholar
  35. 35.
    J.M. Yao, J. Meng, P. Ring, D. Vretenar, Phys. Rev. C 81, 044311 (2010).ADSGoogle Scholar
  36. 36.
    K. Kumar, Ch. Lagrange, M. Girod, B. Grammaticos, Phys. Rev. C 31, 762 (1985).ADSGoogle Scholar
  37. 37.
    I. Deloncle, J. Libert, L. Bennour, L. Bennour, P. Quentin, Phys. Lett. B 233, 16 (1989).ADSGoogle Scholar
  38. 38.
    J. Libert, M. Girod, J.-P. Delaroche, Phys. Rev. C 60, 054301 (1999).ADSGoogle Scholar
  39. 39.
    G.F. Bertsch et al., Phys. Rev. Lett. 99, 032502 (2007).ADSGoogle Scholar
  40. 40.
    T. Niksic, Z.P. Li, D. Vretenar, L. Prochniak, J. Meng, P. Ring, Phys. Rev. C 79, 034303 (2009).ADSGoogle Scholar
  41. 41.
    D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953).ADSMATHGoogle Scholar
  42. 42.
    J.J. Griffin, J.A. Wheeler, Phys. Rev. 108, 311 (1957).ADSMATHGoogle Scholar
  43. 43.
    D.H. Schiff, B. Jancovici, Nucl. Phys. 58, 678 (1964).Google Scholar
  44. 44.
    A. Kamlah, Z. Phys. 216, 52 (1968).ADSGoogle Scholar
  45. 45.
    F.M.H. Villars, in Procedings of the International Conference on Nuclear Selfconsistent Field, Trieste, 1975, edited by G. Ripka, M. Porneuf (North Holland, Amsterdam, 1975).Google Scholar
  46. 46.
    M. Girod, B. Grammaticos, Nucl. Phys. A 330, 40 (1979).ADSGoogle Scholar
  47. 47.
    K. Kumar, M. Baranger, Nucl. Phys. A 330, 40 (1979).Google Scholar
  48. 48.
    K. Kumar, M. Baranger, Nucl. Phys. A 92, 608 (1967).ADSGoogle Scholar
  49. 49.
    K. Kumar, in The Electromagnetic Interaction In Nuclear Spectroscopy, edited by W.D. Hamilton (North-Holland, Amsterdam, 1975) p. 55, and references therein.Google Scholar
  50. 50.
    E.Kh. Yuldashbaeva, J. Libert, P. Quentin, M. Girod, Phys. Lett. B 461, 1 (1999).ADSGoogle Scholar
  51. 51.
    Z.P. Li, T. Niksic, P. Ring, D. Vretenar, J.M. Yao, J. Meng, Phys. Rev. C 86, 034334 (2012).ADSGoogle Scholar
  52. 52.
    M. Girod, J.P. Delaroche, J.F. Berger, J. Libert, Phys. Lett. B 325, 1 (1994).ADSGoogle Scholar
  53. 53.
    O. Sorlin, M.-G Porquet, Progr. Part. Nucl. Phys. 61, 602 (2008).ADSGoogle Scholar
  54. 54.
    M. Wang et al., Chin. Phys. C 36, 1603 (2012).ADSGoogle Scholar
  55. 55.
    C.F. Weizsacker, Z. Phys. 96, 431 (1935).ADSGoogle Scholar
  56. 56.
    H.A. Bethe, R.F. Bacher, Rev. Mod. Phys. 8, 82 (1936).ADSGoogle Scholar
  57. 57.
    X. Campi et al., Nucl. Phys. A 251, 193 (1975).ADSGoogle Scholar
  58. 58.
    C. Thibault et al., Phys. Rev. C 12, 644 (1975).ADSGoogle Scholar
  59. 59.
    D.J. Vieira et al., Phys. Rev. Lett. 57, 3253 (1986).ADSGoogle Scholar
  60. 60.
    N.A. Orr et al., Phys. Lett. B 258, 29 (1991).ADSGoogle Scholar
  61. 61.
    X.G. Zhou et al., Phys. Lett. B 260, 285 (1991).ADSGoogle Scholar
  62. 62.
    C. Detraz et al., Phys. Rev. C 19, 164 (1979).ADSGoogle Scholar
  63. 63.
    D. Guillemaud-Mueller et al., Nucl. Phys. A 426, 37 (1984).ADSGoogle Scholar
  64. 64.
    O. Sorlin et al., Phys. Rev. C 47, 2941 (1993).ADSGoogle Scholar
  65. 65.
    O. Sorlin et al., Nucl. Phys. A 587, 763 (1995).ADSGoogle Scholar
  66. 66.
    T. Glasmacher et al., Phys. Lett. B 395, 163 (1997).ADSGoogle Scholar
  67. 67.
    M. Baranco, R.J. Lombard, Phys. Lett. B 78, 542 (1978).ADSGoogle Scholar
  68. 68.
    B.H. Wildenthal, W. Chung, Phys. Rev. C 22, 2260 (1980).ADSGoogle Scholar
  69. 69.
    A. Poves, J. Retamosa, Phys. Lett. B 184, 311 (1987).ADSGoogle Scholar
  70. 70.
    E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990).ADSGoogle Scholar
  71. 71.
    N. Fukunishi, T. Otsuka, T. Sebe, Phys. Lett. B 296, 279 (1992).ADSGoogle Scholar
  72. 72.
    A. Poves, J. Retamosa, Nucl. Phys. A 571, 221 (1994).ADSGoogle Scholar
  73. 73.
    Takaharu Otsuka, Nucl. Phys. A 616, 406c (1997).Google Scholar
  74. 74.
    E. Caurier, F. Nowacki, A. Poves, J. Retamosa, Phys. Rev. C 58, 2033 (1998).ADSGoogle Scholar
  75. 75.
    S.K. Patra, C.R. Praharaj, Phys. Lett. B 273, 13 (1991).ADSGoogle Scholar
  76. 76.
    Zhongzhou Ren, Z.Y. Zhu, Y.H. Cai, Gongou Xu, Phys. Lett. B 380, 241 (1996).ADSGoogle Scholar
  77. 77.
    G.A. Lalazissis, A.R. Farhan, M.M. Sharma, Nucl. Phys. A 628, 221 (1998).ADSGoogle Scholar
  78. 78.
    J. Terasaki, H. Flocard, P.H. Heenen, P. Bonche, Nucl. Phys. A 621, 706 (1997).ADSGoogle Scholar
  79. 79.
    R. Rodriguez-Guzman, J.L. Egido, L.M. Robledo, Phys. Lett. B 474, 15 (2000).ADSGoogle Scholar
  80. 80.
    D. Hirata, K.Sumiyoshi, B.V. Carlson, H. Toki, Tanihata, Nucl. Phys. A 609, 131 (1996).ADSGoogle Scholar
  81. 81.
    T.R. Werner et al., Nucl. Phys. A 597, 327 (1996).ADSGoogle Scholar
  82. 82.
    T.R. Werner et al., Phys. Lett. B 333, 303 (1994).ADSGoogle Scholar
  83. 83.
    T.R. Werner et al., Phys. Lett. B 335, 259 (1994).ADSGoogle Scholar
  84. 84.
    G.A. Lalazissis et al., Phys. Rev. C 60, 014310 (1999).ADSGoogle Scholar
  85. 85.
    J. Retamosa, E. Caurier, F. Nowacki, A. Poves, Phys. Rev. C 55, 1266 (1997).ADSGoogle Scholar
  86. 86.
    Z.P. Li, J.M. Yao, D. Vretenar, T. Niksic, H. Chen, J. Meng, Phys. Rev. C 84, 054304 (2011).ADSGoogle Scholar
  87. 87.
    O. Tarasov et al., Phys. Lett. B 409, 64 (1997).ADSGoogle Scholar
  88. 88.
    S. Hilaire, M. Girod, Eur. Phys. J. A 33, 237 (2007) http://www-phynu.cea.fr/HFB-Gogny_eng.htm.ADSGoogle Scholar
  89. 89.
    B.V. Pritychenko et al., Phys. Lett. B 461, 322 (1999).ADSGoogle Scholar
  90. 90.
    Brookhaven data base, http://www.nndc.bnl.gov.
  91. 91.
    K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010).ADSGoogle Scholar
  92. 92.
    D. Sohler et al., Phys. Rev. C 66, 054302 (2002).ADSGoogle Scholar
  93. 93.
    R. Rodríguez-Guzmán, J.-L. Egido, L.M. Robledo, Nucl. Phys. A 709, 201 (2002).ADSGoogle Scholar
  94. 94.
    Tomás R. Rodríguez, J.L. Egido, L.M. Robledo, R. Rodríguez-Guzmán, Phys. Rev. C 71, 044313 (2005).ADSGoogle Scholar
  95. 95.
    O. Sorlin, M.-G. Porquet, Phys. Scr. T152, 014003 (2013).ADSGoogle Scholar
  96. 96.
    A. Obertelli et al., Phys. Rev. C 71, 024304 (2005).ADSGoogle Scholar
  97. 97.
    O. Tarasov et al., Phys. Lett. B 409, 64 (1997).ADSGoogle Scholar
  98. 98.
    H. Sakurai et al., Phys. Lett. B 448, 180 (1999).ADSGoogle Scholar
  99. 99.
    M. Stanoiu et al., Phys. Rev. C 69, 034312 (2004).ADSGoogle Scholar
  100. 100.
    S. Raman et al., At. Nucl. Data Tables 78, 1 (2001) and references therein.ADSGoogle Scholar
  101. 101.
    C.R. Hoffman et al., Phys. Lett. B 672, 17 (2009).ADSGoogle Scholar
  102. 102.
    K. Tshoo et al., Phys. Rev. Lett. 109, 022501 (2012).ADSGoogle Scholar
  103. 103.
    J. Gibelin et al., Phys. Rev. C 75, 057306 (2007).ADSGoogle Scholar
  104. 104.
    M. Bernas, Ph. Desagne, M. Langevin, J. Payet, F. Pougheon, P. Roussel, Phys. Lett. B 113, 279 (1982).ADSGoogle Scholar
  105. 105.
    O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).ADSGoogle Scholar
  106. 106.
    O. Sorlin et al., Eur. Phys. J. A 16, 55 (2003).ADSGoogle Scholar
  107. 107.
    O. Sorlin et al., Nucl. Phys. A 669, 351 (2000).ADSGoogle Scholar
  108. 108.
    S. Lunardi et al., Phys. Rev. C 76, 034303 (2007).ADSGoogle Scholar
  109. 109.
    P. Adrich et al., Phys. Rev. C 77, 054306 (2008).ADSGoogle Scholar
  110. 110.
    M. Girod, Ph. Desagne, M. Bernas, M. Lanvegin, F. Pougheon, P. Roussel, Phys. Rev. C 37, 2600 (1988).ADSGoogle Scholar
  111. 111.
    K. Langanke et al., Phys. Rev. C 67, 044314 (2003).ADSGoogle Scholar
  112. 112.
    A. Gade et al., Phys. Rev. C 81, 051304 (R) (2012).ADSGoogle Scholar
  113. 113.
    H.L. Crawford et al., Phys. Rev. Lett. 110, 242701 (2013).ADSGoogle Scholar
  114. 114.
    W. Rother et al., Phys. Rev. Lett. 106, 022502 (2011).ADSGoogle Scholar
  115. 115.
    E. Clément et al., Phys. Rev. C 75, 054313 (2007).ADSGoogle Scholar
  116. 116.
    J. Ljungvall et al., Phys. Rev. Lett. 100, 102502 (2008).ADSGoogle Scholar
  117. 117.
    M. Girod, J.-P. Delaroche, A. Görgen, A. Obertelli, Phys. Lett. B 676, 39 (2009).ADSGoogle Scholar
  118. 118.
    J.-P. Delaroche, M. Girod, H. Goutte, J. Libert, Nucl. Phys. A 771, 103 (2006).ADSGoogle Scholar
  119. 119.
    D.J. Thouless, Nucl. Phys. 22, 78 (1961).MATHMathSciNetGoogle Scholar
  120. 120.
    G.F. Bertsch, S.F. Tsai, Phys. Rep. 18, 125 (1975).ADSGoogle Scholar
  121. 121.
    J.-P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, MA, 1986).Google Scholar
  122. 122.
    M.Z.I. Gering, W.D. Heiss, Phys. Rev. C 29, 1113 (1984).ADSGoogle Scholar
  123. 123.
    S. Péru, H. Goutte, Phys. Rev. C 77, 044313 (2008).ADSGoogle Scholar
  124. 124.
    K. Yoshida, N. Van Giai, Phys. Rev. C 78, 014305 (2008).ADSGoogle Scholar
  125. 125.
    K. Hagino, Nguyen Van Giai, H. Sagawa, Nucl. Phys. A 731, 264 (2004).ADSGoogle Scholar
  126. 126.
    P. Moller, J. Randrup, Nucl. Phys. A 514, 49 (1990).Google Scholar
  127. 127.
    D.P. Arteaga, P. Ring, Phys. Rev. C 77, 034317 (2008).ADSGoogle Scholar
  128. 128.
    C. Losa, A. Pastore, T. Dossing, E. Vigezzi, R.A. Broglia, Phys. Rev. C 81, 064307 (2010).ADSGoogle Scholar
  129. 129.
    J.P. Blaizot, D. Gogny, Nucl. Phys. A 284, 429 (1977).ADSGoogle Scholar
  130. 130.
    S.A. Fayans, E.L. Trykov, D. Zawischa, Nucl. Phys. A 568, 523 (1994).ADSGoogle Scholar
  131. 131.
    B.K. Agrawal, S. Shlomo, Phys. Rev. C 70, 014308 (2004).ADSGoogle Scholar
  132. 132.
    B.K. Agrawal, S. Shlomo, A.I. Sanzhur, Phys. Rev. C 67, 034314 (2003).ADSGoogle Scholar
  133. 133.
    J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, M. Stoitsov, Phys. Rev. C 71, 034310 (2005).ADSGoogle Scholar
  134. 134.
    S. Péru, J.-F. Berger, P.-F. Bortignon, Eur. Phys. J. A 26, 25 (2005).ADSGoogle Scholar
  135. 135.
    Tapas Sil, S. Shlomo, B.K. Agrawal, P.-G. Reinhard, Phys. Rev. C 73, 034316 (2006).ADSGoogle Scholar
  136. 136.
    J. Terasaki, J. Engel, Phys. Rev. C 74, 044301 (2006).ADSGoogle Scholar
  137. 137.
    J.P. Blaizot, D. Gogny, B. Grammaticos, Nucl. Phys. A 265, 315 (1976).ADSGoogle Scholar
  138. 138.
    J. Decharge, L. Sips, Nucl. Phys. A 407, 1 (1983).ADSGoogle Scholar
  139. 139.
    J. Decharge, D. Gogny, B. Grammaticos, L. Sips, Phys. Rev. Lett 49, 982 (1982).ADSGoogle Scholar
  140. 140.
    J. Decharge, L. Sips, D. Gogny, Phys. Lett. B 98, 299 (1981).Google Scholar
  141. 141.
    D. Gogny, R. Padjen, Nucl. Phys. A 293, 365 (1977).ADSGoogle Scholar
  142. 142.
    J. Margueron, N. Van Giai, J. Navarro, Phys. Rev. C 72, 034311 (2005).ADSGoogle Scholar
  143. 143.
    J. Margueron, J. Navarro, N. Van Giai, P. Schuck, Phys. Rev. C 77, 064306 (2008).ADSGoogle Scholar
  144. 144.
    V. De Donno, G. Co’, M. Anguiano, A.M. Lallena, Phys. Rev. C 83, 044324 (2011).ADSGoogle Scholar
  145. 145.
    D. Gambacurta, M. Grasso, V. De Donno, G. Co’, F. Catara, Phys. Rev. C 86, 021304 (2012).ADSGoogle Scholar
  146. 146.
    V.G. Soloviev, Theory of complex nuclei (Pergamon Press, Oxford, New York, 1976).Google Scholar
  147. 147.
    M.N. Harakeh, A. van der Woude, Giant Resonnances: Fundamental High-Frequency Modes of Nuclear Excitation (Oxford University Press, Oxford, 2001).Google Scholar
  148. 148.
    I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).ADSGoogle Scholar
  149. 149.
    D.H. Youngblood, Y.-W. Lui, H.L. Clark, Phys. Rev. C 60, 014304 (1999).ADSGoogle Scholar
  150. 150.
    D.H. Youngblood, Y.-W. Lui, H.L. Clark, Phys. Rev. C 65, 034302 (2002).ADSGoogle Scholar
  151. 151.
    J. Gibelin, D. Beaumel, T. Motobayashi, Y. Blumenfeld, N. Aoi, H. Baba, Z. Elekes, S. Fortier et al., Phys. Rev. Lett. 101, 212503 (2008).ADSGoogle Scholar
  152. 152.
    M. Martini, S. Péru., M. Dupuis, Phys. Rev. C 83, 034309 (2011).ADSGoogle Scholar
  153. 153.
    S. Péru, G. Gosselin, M. Martini, M. Dupuis, S. Hilaire, J.-C. Devaux, Phys. Rev. C 83, 014314 (2011).ADSGoogle Scholar
  154. 154.
    T. Kawano, T. Ohsawa, M. Baba, T. Nakagawa, Phys. Rev. C 63, 034601 (2001).ADSGoogle Scholar
  155. 155.
    M. Dupuis, 13th International Conference on Nuclear Reaction Mechanisms, Varenna, CERN-Proceedings-2012-002, Vol. 117 (2012) p. 95.Google Scholar
  156. 156.
    G.M. Gurevich et al., Nucl. Phys. A 273, 326 (1976).ADSGoogle Scholar
  157. 157.
    S. Brandenburg et al., Phys. Rev. Lett. 49, 1687 (1982).ADSGoogle Scholar
  158. 158.
    R. De Leo et al., Nucl. Phys. A 441, 591 (1985).ADSGoogle Scholar
  159. 159.
    Th. Weber et al., Phys. Rev. Lett. 59, 2028 (1987).ADSGoogle Scholar
  160. 160.
    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009).ADSGoogle Scholar
  161. 161.
    M. Martini, S. Goriely, S. Hilaire, S. Péru, AIP Conf. Proc. 1491, 160 (2012).ADSGoogle Scholar
  162. 162.
    H. Utsunomiya et al., Phys. Rev. C 88, 015805 (2013).ADSGoogle Scholar
  163. 163.
    T. Kibedi, R.H. Spear, At. Data Nucl. Data Tables 80, 44 (2002).ADSGoogle Scholar
  164. 164.
    M. Goeppert-Mayer, J.H.D. Jensen, Elementary Theory of nuclear Shell Structure (Wiley, New York, 1955).Google Scholar
  165. 165.
    S.M. Lenzi, F. Nowacki, A. Poves, K. Sieja, Phys. Rev. C 82, 054301 (2010).ADSGoogle Scholar
  166. 166.
    B.G. Carlsson, J. Toivanen, A. Pastore, Phys. Rev. C 86, 014307 (2012).ADSGoogle Scholar
  167. 167.
    K.L. Yurkewicz et al., Phys. Rev. C 70, 054319 (2004).ADSGoogle Scholar
  168. 168.
    O. Perru et al., Phys. Rev. Lett. 96, 2325501 (2006).Google Scholar
  169. 169.
    A. Dijon et al., Phys. Rev. C 85, 031301(R) (2012).ADSGoogle Scholar
  170. 170.
    C.J. Chiara et al., Phys. Rev. C 86, 041304 (2012).ADSGoogle Scholar
  171. 171.
    R. Broda et al., Phys. Rev. C 86, 064312 (2012).ADSGoogle Scholar
  172. 172.
    F. Recchia et al., Phys. Rev. C 88, 041302 (2013).ADSGoogle Scholar
  173. 173.
    F. Marechal, T. Suomijarvi, Y. Blumenfeld, A. Azhari, E. Bauge, D. Bazin, J.A. Brown, P.D. Cottle et al., Phys. Rev. C 60, 034615 (1999).ADSGoogle Scholar
  174. 174.
    E. Bauge, J.P. Delaroche, M. Girod, Phys. Rev. C 63, 024607 (2001).ADSGoogle Scholar
  175. 175.
    J.-P. Jeukenne, A. Lejeune, C. Mahaux, Phys. Rev. C 10, 1391 (1974).ADSGoogle Scholar
  176. 176.
    M. Dupuis, T. Kawano, J.-P. Delaroche, E. Bauge, Phys. Rev. C 83, 014602 (2011).ADSGoogle Scholar
  177. 177.
    M. Martini, S. Péru, S. Goriely, Phys. Rev. C 89, 044306 (2014).ADSGoogle Scholar
  178. 178.
    N. Vermeulen, S.K. Chamoli, J.M. Daugas, M. Hass, D.L. Balabanski, J.P. Delaroche, F. de Oliveira-Santos, G. Georgiev et al., Phys. Rev. C 75, 051302 (2007).ADSGoogle Scholar
  179. 179.
    R.L. Lozeva, D.L. Balabanski, G. Georgiev, J.M. Daugas, S. Péru, G. Audi, S. Cabaret, T. Faul et al., Phys. Lett. B 694, 316 (2011).ADSGoogle Scholar
  180. 180.
    F. Chappert, M. Girod, S. Hilaire, Phys. Lett. B 668, 420 (2008).ADSGoogle Scholar
  181. 181.
    B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981).ADSGoogle Scholar
  182. 182.
    R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988).ADSGoogle Scholar
  183. 183.
    A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998).ADSGoogle Scholar
  184. 184.
    T. Otsuka, T. Matsuo, D. Abe, Phys. Rev. Lett. 97, 162501 (2006).ADSGoogle Scholar
  185. 185.
    M. Anguiano, M. Grasso, G. Co’, V. De Donno, A.M. Lallena, Phys. Rev. C 86, 054302 (2012).ADSGoogle Scholar
  186. 186.
    F. Chappert, PhD thesis (2007).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CEA, DAM, DIFArpajonFrance
  2. 2.Department of Physics and AstronomyGhent UniversityGentBelgium
  3. 3.Institut d’Astronomie et d’AstrophysiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations