Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz

  • J. Karch
  • Yu. Sobolev
  • M. Beck
  • K. Eberhardt
  • G. Hampel
  • W. Heil
  • R. Kieser
  • T. Reich
  • N. Trautmann
  • M. Ziegner
Regular Article - Experimental Physics

Abstract.

The performance of the solid deuterium ultra-cold neutron (UCN) source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10MJ is described. The solid deuterium converter with a volume of \( V=160\) cm3 (8mol), which is exposed to a thermal neutron fluence of \( 4.5\times 10^{13}\) n/cm2, delivers up to 240000 UCN (\(v \le 6\) m/s) per pulse outside the biological shield at the experimental area. UCN densities of \( \approx \) 10 cm3 are obtained in stainless-steel bottles of \( V\approx \) 10 L. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.

References

  1. 1.
    J. Engel, M.J. Ramsey-Musolf, U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013)ADSCrossRefGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    N. Severjins, O. Naviliat-Cuncic, M. Beck, Rev. Mod. Phys. 78, 991 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    D. Dubbers, M.G. Schmidt, Rev. Mod. Phys. 83, 1111 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    R. Golub, D.J. Richardson, S.K. Lamoreaux, Ultra-Cold Neutrons (Taylor & Francis Group, 1991)Google Scholar
  10. 10.
    A. Steyerl et al., Phys. Lett. A 116, 347 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    R. Golub, J.M. Pendlebury, Phys. Lett. A 53, 133 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    R. Golub et al., Z. Phys. B 51, 187 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    O. Zimmer, F.M. Piegsa, S.N. Ivanov, Phys. Rev. Lett. 107, 134801 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Masuda et al., Phys. Rev. Lett. 108, 134801 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    R. Golub, K. Böning, Z. Phys. B 51, 95 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    Yu.N. Pokotilovski, Nucl. Instrum. Methods A 356, 412 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    A.P. Serebrov et al., JETP Lett. 66, 802 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    A. Anghel et al., Nucl. Instrum. Methods A 611, 272 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    B. Lauss et al., AIP Conf. Proc. 1441, 576 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    B. Lauss et al., Hyperfine Interact. 211, 21 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A. Saunders et al., Rev. Sci. Instrum. 84, 013304 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    E. Korobkina et al., Nucl. Instrum. Methods A 579, 530 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    U. Trinks et al., Nucl. Instrum. Methods A 440, 666 (2000)ADSCrossRefGoogle Scholar
  24. 24.
  25. 25.
    A.W. McReynolds, PICG, Vol. 16 (1958) p. 297Google Scholar
  26. 26.
    A.W. McReynolds, in Proceedings of the 2nd UN International Conference Peaceful Uses of Atomic Energy, Geneva, 1958, Vol. 10 (IAEA, 1958) p. 1540Google Scholar
  27. 27.
    R.S. Stone et al., Nucl. Sci. Eng. 6, 255 (1959)Google Scholar
  28. 28.
    H. Menke, N. Trautmann, W.J. Krebs, Kerntechnik 17, 281 (1975)Google Scholar
  29. 29.
    A. Frei et al., Eur. Phys. J. A 34, 119 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Th. Lauer, Investigation of a superthermal ultracold neutron source based on a solid deuterium converter for the TRIGA Mainz reactor, Dissertation, Universität Mainz (2010)Google Scholar
  31. 31.
    Th. Lauer, Th. Zechlau, Eur. Phys. J. A 49, 104 (2013)ADSCrossRefGoogle Scholar
  32. 32.
  33. 33.
  34. 34.
    M. Klein et al., AIP Conf. Proc. 596, 193 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    D. Bondoux, H.G. Börner, V. Ermilov, Nucl. Instrum. Methods A 606, 637 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    E.P. Shabalin et al., Part. Nucl. Lett. 5, 114 (2002)Google Scholar
  37. 37.
    O.D. Gonzalez, D. White, H.L. Johnston, J. Phys. Chem. 61, 773 (1957)CrossRefGoogle Scholar
  38. 38.
    E.C. Kerr, E.B. Rifkin, H.L. Johnston, J. Am. Chem.Soc. 73, 282 (1951)CrossRefGoogle Scholar
  39. 39.
    F.G. Brickwedde, R.B. Scott, H.S. Taylor, J. Res. Natl. Bur. Std. 15, 463 (1935)CrossRefGoogle Scholar
  40. 40.
    Z.-Ch. Yu, S.S. Malik, R. Golub, Z. Phys. B 62, 137 (1986)ADSCrossRefGoogle Scholar
  41. 41.
    M. Nielsen, H. Bjerrum Moller, Phys. Rev. B 3, 4383 (1971)ADSCrossRefGoogle Scholar
  42. 42.
    A. Frei et al., Phys. Rev. B 80, 064301 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    A. Frei et al., EPL 92, 62001 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    M.J. Harris, R.E. Kay, Proc. Phys. Soc. 85, 79 (1965)ADSCrossRefGoogle Scholar
  45. 45.
    Z-Ch. Yu, S.S. Malik, Z. Phys. B 62, 137 (1986)ADSCrossRefGoogle Scholar
  46. 46.
    L. Kaplan, G.R. Ringo, K.E. Wilzbach, Phys. Rev. 87, 785 (1952)ADSCrossRefGoogle Scholar
  47. 47.
    C.-Y. Liu, A.R. Young, S.K. Lamoreaux, Phys. Rev. B 62, R3581 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    V.F. Sears, Neutron News 3, 29 (1980)Google Scholar
  49. 49.
    Yu.N. Pokotilovski, Nucl. Instrum. Methods A 675, 29 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    I. Altarev et al., Eur. Phys. J. A 37, 9 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    A. Steyerl, Z. Phys. 254, 169 (1972)ADSCrossRefGoogle Scholar
  52. 52.
    I. Berceanu, V.K. Ignatovich, Vacuum 23, 441 (1973)CrossRefGoogle Scholar
  53. 53.
    S.K. Sinha, E.B. Sirota, S. Garoff, Phys. Rev. B 38, 2297 (1988)ADSCrossRefGoogle Scholar
  54. 54.
    Yu. Sobolev et al., Nucl. Instrum. Methods A 614, 461 (2010)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. Karch
    • 1
  • Yu. Sobolev
    • 2
  • M. Beck
    • 1
  • K. Eberhardt
    • 2
  • G. Hampel
    • 2
  • W. Heil
    • 1
  • R. Kieser
    • 1
  • T. Reich
    • 2
  • N. Trautmann
    • 2
  • M. Ziegner
    • 3
  1. 1.Institute of PhysicsJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Institute of Nuclear ChemistryJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Austrian Institute of Technology GmbHHealth & Environment DepartmentWienAustria

Personalised recommendations