Skip to main content

Advertisement

Log in

The equation of state and symmetry energy of low-density nuclear matter

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions and astrophysical phenomena. A recently developed quantum statistical (QS) approach that takes the formation of clusters into account predicts low-density symmetry energies far above the usually quoted mean-field limits. A consistent description of the symmetry energy has been developed that joins the correct low-density limit with values calculated from quasiparticle approaches valid near the saturation density. The results are confronted with experimental values for free symmetry energies and internal symmetry energies, determined at sub-saturation densities and temperatures below 10MeV using data from heavy-ion collisions. There is very good agreement between the experimental symmetry energy values and those calculated in the QS approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.A. Li et al., Phys. Rep. 464, 113 (2008)

    Article  ADS  Google Scholar 

  2. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)

    Article  ADS  Google Scholar 

  3. S. Typel, contribution to this Topical Issue

  4. K. Sumiyoshi, G. Röpke, Phys. Rev. C 77, 055804 (2008)

    Article  ADS  Google Scholar 

  5. S. Kowalski et al., Phys. Rev. C 75, 014601 (2007)

    Article  ADS  Google Scholar 

  6. E. OConnor, C.D. Ott, Class. Quantum Grav. 27, 114103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. E.J. Lentz et al., J. Astrophys. 760, 94 (2012)

    Article  ADS  Google Scholar 

  8. J.M. Lattimer et al., Nucl. Phys. A 535, 331 (1991)

    Article  ADS  Google Scholar 

  9. H. Shen et al., Nucl. Phys. A 637, 435 (1998)

    Article  ADS  Google Scholar 

  10. G. Shen et al., Phys. Rev. C 83, 035802 (2011)

    Article  ADS  Google Scholar 

  11. M. Hempel et al., Nucl. Phys. A 837, 210 (2010)

    Article  ADS  Google Scholar 

  12. C.J. Horowitz, A. Schwenk, Nucl. Phys. A 776, 55 (2006)

    Article  ADS  Google Scholar 

  13. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003)

    Article  ADS  Google Scholar 

  14. P. Danielewicz, Nucl. Phys. A 727, 233 (2003)

    Article  ADS  Google Scholar 

  15. H. Jiang et al., Phys. Rev. C 85, 024301 (2012)

    Article  ADS  Google Scholar 

  16. S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010)

    Article  ADS  Google Scholar 

  17. W.-D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Verlag, Berlin, 1986)

  18. C. Fuchs, H.H. Wolter, Eur. Phys. J. A 30, 5 (2006)

    Article  ADS  Google Scholar 

  19. T. Klähn et al., Phys. Rev. C 74, 035802 (2006)

    Article  ADS  Google Scholar 

  20. G. Watanabe et al., Phys. Rev. Lett. 103, 121101 (2009)

    Article  ADS  Google Scholar 

  21. G. Röpke et al., Nucl. Phys. A 379, 536 (1982)

    Article  ADS  Google Scholar 

  22. G. Röpke et al., Nucl. Phys. A 424, 594 (1984)

    Article  ADS  Google Scholar 

  23. M. Schmidt, G. Röpke, H. Schulz, Ann. Phys. (NY) 202, 57 (1990)

    Article  ADS  Google Scholar 

  24. J.P. Bondorf et al., Phys. Rep. 257, 133 (1995)

    Article  ADS  Google Scholar 

  25. G. Röpke, Phys. Rev. C 79, 014002 (2009)

    Article  ADS  Google Scholar 

  26. S. Typel, Phys. Rev. C 71, 064301 (2005)

    Article  ADS  Google Scholar 

  27. D. Vautherin, D.M. Brink, Phys. Lett. B 32, 149 (1970)

    Article  ADS  Google Scholar 

  28. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)

    Article  ADS  Google Scholar 

  29. G. Röpke, N.-U. Bastian, D. Blaschke, T. Klähn, S. Typel, H.H. Wolter, Nucl. Phys. A 897, 70 (2013)

    Article  ADS  Google Scholar 

  30. G. Röpke, A. Grigo, K. Sumiyoshi, Hong Shen, Phys. Part. Nucl. Lett. 2, 275 (2005)

    Google Scholar 

  31. G. Röpke, M. Schmidt, H. Schulz, Nucl. Phys. A 424, 594 (1984)

    Article  ADS  Google Scholar 

  32. A. Kolomiets et al., Phys. Rev. C 55, 1376 (1997)

    Article  ADS  Google Scholar 

  33. S. Shlomo, V.M. Kolomietz, Rep. Prog. Phys. 68, 1 (2005)

    Article  ADS  Google Scholar 

  34. G. Röpke, Nucl. Phys. A 867, 66 (2011)

    Article  ADS  Google Scholar 

  35. G. Röpke et al., Phys. Status Solidi B 100, 215 (1980)

    Article  ADS  Google Scholar 

  36. V. Baran et al., Phys. Rep. 410, 335 (2005)

    Article  ADS  Google Scholar 

  37. M.B. Tsang et al., Phys. Rev. Lett. 102, 122701 (2009)

    Article  ADS  Google Scholar 

  38. S. Wuenschel et al., Phys. Rev. C 79, 061602(R) (2009)

    Article  ADS  Google Scholar 

  39. C. Sfienti et al., Phys. Rev. Lett. 102, 152701 (2009)

    Article  ADS  Google Scholar 

  40. J. Wang et al., Phys. Rev. C 75, 014604 (2007)

    Article  ADS  Google Scholar 

  41. L. Qin et al., Phys. Rev. Lett. 108, 172701 (2012)

    Article  ADS  Google Scholar 

  42. R. Wada et al., Phys. Rev. C 85, 064618 (2012)

    Article  ADS  Google Scholar 

  43. J.B. Natowitz et al., Phys. Rev. Lett. 104, 202501 (2010)

    Article  ADS  Google Scholar 

  44. S. Wuenschel et al., Nucl. Instrum. Methods Phys. Res. A 604, 578 (2009)

    Article  ADS  Google Scholar 

  45. K. Hagel et al., Phys. Rev. C 62, 034607 (2000)

    Article  ADS  Google Scholar 

  46. L. Qin, thesis, Texas A&M University (2008)

  47. J. Wang et al., Phys. Rev. C 72, 024603 (2005)

    Article  ADS  Google Scholar 

  48. Z. Kohley et al., Phys. Rev. C 86, 044605 (2012)

    Article  ADS  Google Scholar 

  49. Z. Kohley et al., Phys. Rev. C 83, 044601 (2011)

    Article  ADS  Google Scholar 

  50. A.B. McIntosh, contribution to this Topical Issue

  51. S. Wuenschel, PhD thesis, Texas A & M University (2009)

  52. A.B. McIntosh et al., Phys. Lett. B 719, 337 (2013)

    Article  ADS  Google Scholar 

  53. A.B. McIntosh et al., Phys. Rev. C 87, 034617 (2013)

    Article  ADS  Google Scholar 

  54. S. Wuenschel et al., Nucl. Phys. A 843, 1 (2010)

    Article  ADS  Google Scholar 

  55. P. Marini et al., Phys. Rev. C 85, 034617 (2012)

    Article  ADS  Google Scholar 

  56. J.C. Steckmeyer et al., Nucl. Phys. A 686, 537 (2001)

    Article  ADS  Google Scholar 

  57. G. Nebbia et al., Phys. Lett. B 176, 20 (1986)

    Article  ADS  Google Scholar 

  58. H.M. Xu et al., Phys. Lett. B 182, 155 (1986)

    Article  ADS  Google Scholar 

  59. D. Fabris et al., Phys. Lett. B 196, 429 (1987)

    Article  ADS  Google Scholar 

  60. K. Hagel et al., Nucl. Phys. A 486, 429 (1988)

    Article  ADS  Google Scholar 

  61. R. Wada et al., Phys. Rev. C 39, 497 (1989)

    Article  ADS  Google Scholar 

  62. M. Gonin et al., Phys. Lett. B 217, 406 (1989)

    Article  ADS  Google Scholar 

  63. A. Chbihi et al., Phys. Rev. C 43, 666 (1991)

    Article  ADS  Google Scholar 

  64. T.K. Nayak et al., Phys. Rev. C 45, 132 (1992)

    Article  ADS  Google Scholar 

  65. C. Schwarz et al., Phys. Rev. C 48, 676 (1993)

    Article  ADS  Google Scholar 

  66. J.B. Natowitz et al., Phys. Rev. C 52, R2322 (1995)

    Article  ADS  Google Scholar 

  67. M.B. Tsang et al., Phys. Rev. C 53, R1057 (1996)

    Article  ADS  Google Scholar 

  68. Z. Majka et al., Phys. Rev. C 55, 2291 (1997)

    Article  Google Scholar 

  69. M.J. Huang et al., Phys. Rev. Lett. 78, 1648 (1997)

    Article  ADS  Google Scholar 

  70. H. Xi et al., Phys. Lett. B 431, 8 (1998)

    Article  ADS  Google Scholar 

  71. H. Xi et al., Phys. Rev. C 59, 1567 (1999)

    Article  ADS  Google Scholar 

  72. J.B. Natowitz et al., Phys. Rev. C 65, 034618 (2002)

    Article  ADS  Google Scholar 

  73. S.R. Souza et al., Phys. Rev. C 80, 044606 (2009)

    Article  ADS  Google Scholar 

  74. S. Albergo et al., Nuovo Cimento A 89, 1 (1985)

    Article  ADS  Google Scholar 

  75. H. Zheng, A. Bonasera, Phys. Lett. B 696, 178 (2011)

    Article  ADS  Google Scholar 

  76. H. Zheng, G. Giuliani, A. Bonasera, Nucl. Phys. A 892, 43 (2012)

    Article  ADS  Google Scholar 

  77. J. Mabiala et al., Int. J. Mod. Phys. E 22, 1350090 (2013)

    Article  ADS  Google Scholar 

  78. A.Z. Mekjian, Phys. Rev. C 17, 1051 (1978)

    Article  ADS  Google Scholar 

  79. A.Z. Mekjian, Phys. Rev. Lett. 38, 640 (1977)

    Article  ADS  Google Scholar 

  80. J.B. Natowitz et al., Int. J. Mod. Phys. E 13, 269 (2004)

    Article  ADS  Google Scholar 

  81. V.E. Viola et al., Phys. Rev. Lett. 93, 132701 (2004)

    Article  ADS  Google Scholar 

  82. G. Röpke et al., Phys. Rev. C 88, 024609 (2013)

    Article  ADS  Google Scholar 

  83. S. Shlomo et al., Phys. Rev. C 79, 034604 (2009)

    Article  ADS  Google Scholar 

  84. J.B. Elliott et al., Phys. Rev. C 67, 024609 (2003)

    Article  ADS  Google Scholar 

  85. J.B. Elliott, arXiv:1203.5132 submitted to Phys. Rev. C (2013)

  86. K. Hagel et al., Phys. Rev. Lett. 108, 062702 (2012)

    Article  ADS  Google Scholar 

  87. M.B. Tsang et al., Phys. Rev. Lett. 86, 5023 (2001)

    Article  ADS  Google Scholar 

  88. M.B. Tsang et al., Phys. Rev. C 64, 041603 (2001)

    Article  ADS  Google Scholar 

  89. S.R. Souza et al., Phys. Rev. C 78, 014605 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  90. L.W. Chen et al., Phys. Rev. Lett. 94, 032701 (2005)

    Article  ADS  Google Scholar 

  91. L.W. Chen et al., Phys. Rev. C 76, 054316 (2007)

    Article  ADS  Google Scholar 

  92. P. Danielewicz, J. Lee, Nucl. Phys. A 922, 1 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hagel.

Additional information

Communicated by A. Ramos

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Àngels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagel, K., Natowitz, J.B. & Röpke, G. The equation of state and symmetry energy of low-density nuclear matter. Eur. Phys. J. A 50, 39 (2014). https://doi.org/10.1140/epja/i2014-14039-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14039-4

Keywords

Navigation