Skip to main content

Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

Abstract.

The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions, especially those induced by radioactive beams, but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the \( \pi^{-}\)/\( \pi^{+}\) ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the \( \pi^{-}\)/\( \pi^{+}\) ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the \( \pi^{-}\)/\( \pi^{+}\) ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more \( \pi^{-}\)/\( \pi^{+}\) data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the K +/K 0 ratio, \( \eta\) meson and high-energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.

This is a preview of subscription content, access via your institution.

References

  1. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)

    ADS  Article  Google Scholar 

  2. B.A. Li et al., J. Phys. Conf. Ser. 312, 042006 (2011)

    ADS  Article  Google Scholar 

  3. B. Tsang et al., Phys. Rev. C 86, 015803 (2012)

    ADS  Article  Google Scholar 

  4. J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)

    ADS  Article  Google Scholar 

  5. L.W. Chen, in Proceedings of the 14th National Conference on Nuclear Structure in China (NSC2012) (World Scientific, Singapore, 2012) pp. 43--54, arXiv:1212.0284

  6. B.A. Li et al., J. Phys. Conf. Ser. 413, 012021 (2013) arXiv:1212.1178

    ADS  Article  Google Scholar 

  7. B.A. Li et al., Phys. Rev. C 71, 014608 (2005)

    ADS  Article  Google Scholar 

  8. Q. Li, Z. Li et al., J. Phys. G: Nucl. Part. Phys. 31, 1359 (2005)

    ADS  Article  Google Scholar 

  9. G. Ferini et al., Phys. Rev. Lett. 97, 202301 (2006)

    ADS  Article  Google Scholar 

  10. B.A. Li, Phys. Rev. Lett. 88, 192701 (2002)

    ADS  Article  Google Scholar 

  11. P. Russotto et al., Phys. Lett. B 697, 471 (2011)

    ADS  Article  Google Scholar 

  12. G.C. Yong, B.A. Li, L.W. Chen, Phys. Lett. B 650, 344 (2007)

    ADS  Article  Google Scholar 

  13. L.W. Chen, C.M. Ki, B.A. Li, Nucl. Phys. A 729, 809 (2003)

    ADS  Article  Google Scholar 

  14. G.C. Yong, B.A. Li, L.W. Chen, X.C. Zhang, Phys. Rev. C 80, 044608 (2009)

    ADS  Article  Google Scholar 

  15. Q. Li, Z. Li, E. Zhao, R.K. Gupta, Phys. Rev. C 71, 054907 (2005)

    ADS  Article  Google Scholar 

  16. G.C. Yong, B.A Li, Phys. Let. B 723, 388 (2013)

    ADS  Article  Google Scholar 

  17. G.C. Yong, B.A. Li, L.W. Chen, Phys. Lett. B 661, 82 (2008)

    ADS  Article  Google Scholar 

  18. Y.G. Ma et al., Phys. Rev. C 85, 024618 (2012)

    ADS  Article  Google Scholar 

  19. FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 781, 459 (2007)

    ADS  Article  Google Scholar 

  20. B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Phys. Rev. C 69, 011603 (2004)

    ADS  Article  Google Scholar 

  21. B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Nucl. Phys. A 735, 563 (2004)

    ADS  Article  Google Scholar 

  22. Z.G. Xiao et al., Phys. Rev. Lett. 102, 062502 (2009)

    ADS  Article  Google Scholar 

  23. Z.G. Xiao et al., Sci. Sin. Phys. Mech. Astron. 41, 439 (2011)

    Article  Google Scholar 

  24. Z.Q. Feng, G.M. Jin, Phys. Lett. B 683, 140 (2010)

    ADS  Article  Google Scholar 

  25. W.J. Xie et al., Phys. Lett. B 718, 1510 (2013)

    ADS  Article  Google Scholar 

  26. J. Xu, C.M. Ko, Y. Oh, Phys. Rev. C 81, 024910 (2010)

    ADS  Article  Google Scholar 

  27. G.C. Yong, Eur. Phys. J. A 46, 399 (2010)

    ADS  Article  Google Scholar 

  28. J. Xu, L.W. Chen, C.K. Ko, B.A. Li, Y.G. Ma, Phys. Rev. C 87, 067601 (2013)

    ADS  Article  Google Scholar 

  29. C. Xu, A. Li, B.A. Li, Phys. Rev. C 81, 064612 (2010)

    ADS  Article  Google Scholar 

  30. W. Zuo, I. Bombaci, U. Lombardo, contribution to this Topical Issue

  31. C. Xu, A. Li, B.A. Li, J. Phys.: Conf. Ser. 420, 012190 (2013)

    Google Scholar 

  32. H.K. Lee, Mannque Rho, contribution to this Topical Issue

  33. L.W. Chen et al., Phys. Rev. C 80, 014322 (2009)

    ADS  Article  Google Scholar 

  34. L.W. Chen, Sci. China Phys. Mech. Astron. 54, s124 (2011) arXiv:1101.2384

    ADS  Article  Google Scholar 

  35. W.Z. Jiang, B.A. Li, Phys. Rev. C 80, 044322 (2009)

    ADS  Article  Google Scholar 

  36. B.A. Li, Nucl. Phys. A 708, 365 (2002)

    ADS  Article  Google Scholar 

  37. H. Müller, B.D. Serot, Phys. Rev. C 52, 2072 (1995)

    ADS  Article  Google Scholar 

  38. B.A. Li, C.M. Ko, Nucl. Phys. A 618, 498 (1997)

    ADS  Article  Google Scholar 

  39. H.S. Xu et al., Phys. Rev. Lett. 85, 716 (2000)

    ADS  Article  Google Scholar 

  40. B.A. Li et al., Phys. Rev. C 67, 017601 (2003)

    ADS  Article  Google Scholar 

  41. G. Ferini, M. Colonna, T. Gaitanos, M. Di Toro, Nucl. Phys. A 762, 147 (2005)

    ADS  Article  Google Scholar 

  42. M.D. Cozma, Phys. Lett. B 700, 139 (2011)

    ADS  Article  Google Scholar 

  43. W. Benenson et al., Phys. Rev. Lett. 43, 683 (1979)

    ADS  Article  Google Scholar 

  44. S. Nagamiya et al., Phys. Rev. C 24, 971 (1981)

    ADS  Article  Google Scholar 

  45. J. Harris et al., Phys. Lett. B 153, 377 (1985)

    ADS  Article  Google Scholar 

  46. R. Stock, Phys. Rep. 135, 259 (1986)

    ADS  Article  Google Scholar 

  47. G.F. Bertsch, Nature 283, 280 (1980)

    ADS  Article  Google Scholar 

  48. H.R. Jaqaman, A.Z. Mekjian, L. Zamick, Phys. Rev. C 27, 2782 (1983)

    ADS  Article  Google Scholar 

  49. H.R. Jaqaman, A.Z. Mekjian, L. Zamick, Phys. Rev. C 29, 2067 (1984)

    ADS  Article  Google Scholar 

  50. H.R. Jaqaman, Phys. Rev. C 39, 169 (1988)

    ADS  Article  Google Scholar 

  51. C. Xu, B.A. Li, L.W. Chen, Phys. Rev. C 82, 054607 (2010)

    ADS  Article  Google Scholar 

  52. C. Xu, B.A. Li, L.W. Chen, C.M. Ko, Nucl. Phys. A 865, 1 (2011)

    ADS  Article  Google Scholar 

  53. R. Chen, B.J. Cai, L.W. Chen, B.A. Li, X.H. Li, C. Xu, Phys. Rev. C 85, 024305 (2012)

    ADS  Article  Google Scholar 

  54. L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005)

    ADS  Article  Google Scholar 

  55. A. Akmal et al., Phys. Rev. C 58, 1804 (1998)

    ADS  Article  Google Scholar 

  56. C. Hartnack et al., Eur. Phys. J. A 1, 151 (1998)

    ADS  Article  Google Scholar 

  57. D.H. Wen et al., Phys. Rev. Lett. 103, 211102 (2009)

    ADS  Article  Google Scholar 

  58. M. Zhang et al., Phys. Rev. C 80, 034616 (2009)

    ADS  Article  Google Scholar 

  59. M. Zhang et al., Phys. Rev. C 82, 044602 (2010)

    ADS  Article  Google Scholar 

  60. B. Hong and the FOPI Collaboration, Phys. Rev. C 66, 034901 (2002)

    ADS  Article  Google Scholar 

  61. J. Aichelin, C.M. Ko, Phys. Rev. Lett. 55, 2661 (1985)

    ADS  Article  Google Scholar 

  62. KaoS Collaboration (C. Sturm et al.), Phys. Rev. Lett. 86, 39 (2001)

    ADS  Article  Google Scholar 

  63. Ch. Hartnack, H. Oeschler et al., Phys. Rev. Lett. 96, 012302 (2006)

    ADS  Article  Google Scholar 

  64. C. Fuchs et al., Phys. Rev. Lett. 86, 1974 (2001)

    ADS  Article  Google Scholar 

  65. X. Lopez, Y.J. Kim et al., Phys. Rev. C 75, 011901(R) (2007)

    ADS  Article  Google Scholar 

  66. Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012)

    Article  Google Scholar 

  67. Gy. Wolf, W. Cassing, U. Mosel, Nucl. Phys. A 552, 549 (1993)

    ADS  Article  Google Scholar 

  68. M. Thomere, C. Hartnack, G. Wolf, J. Aichelin, Phys. Rev. C 75, 064902 (2007)

    ADS  Article  Google Scholar 

  69. A. Depaoli, K. Niita, W. Cassing, U. Mosel, C.M. Ko, Phys. Lett. B 219, 194 (1989)

    ADS  Article  Google Scholar 

  70. B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)

    ADS  Article  Google Scholar 

  71. L. Shi, P. Danielewicz, Europhys. Lett. 49, 34 (2000)

    ADS  Article  Google Scholar 

  72. G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)

    ADS  Article  Google Scholar 

  73. H. Nifenecker, J.A. Pinston, Annu. Rev. Nucl. Part. Sci. 40, 113 (1990)

    ADS  Article  Google Scholar 

  74. W. Cassing, V. Metag, U. Mosel, K. Niita, Phys. Rep. 188, 363 (1990)

    ADS  Article  Google Scholar 

  75. B.A. Remington, M. Blann, G.F. Bertsch, Phys. Rev. Lett. 57, 2909 (1986)

    ADS  Article  Google Scholar 

  76. C.M. Ko, G.F. Bertsch, J. Aichelin, Phys. Rev. C 31, 2324(R) (1985)

    ADS  Article  Google Scholar 

  77. W. Cassing, T. Biro, U. Mosel, M. Tohyama, W. Bauer, Phys. Lett. B 181, 217 (1986)

    ADS  Article  Google Scholar 

  78. W. Bauer, G.F. Bertsch, W. Cassing, U. Mosel, Phys. Rev. C 34, 2127 (1986)

    ADS  Article  Google Scholar 

  79. J. Stevenson et al., Phys. Rev. Lett. 57, 555 (1986)

    ADS  Article  Google Scholar 

  80. G.C. Yong, W. Zuo, X.C. Zhang, Phys. Lett. B 705, 240 (2011)

    ADS  Article  Google Scholar 

  81. H. Nifenecker, J.P. Bondorf, Nucl. Phys. A 442, 478 (1985)

    ADS  Article  Google Scholar 

  82. K. Nakayama, G.F. Bertsch, Phys. Rev. C 34, 2190 (1986)

    ADS  Article  Google Scholar 

  83. M. Schäffer, T.S. Biro, W. Cassing, U. Mosel, H. Nifenecker, J.A. Pinstan, Z. Phys. A 339, 391 (1991)

    ADS  Article  Google Scholar 

  84. N. Gan et al., Phys. Rev. C 49, 298 (1994)

    ADS  Article  Google Scholar 

  85. R.G.E. Timmermans, T.D. Penninga, B.F. Gibson, M.K. Liou, Phys. Rev. C 73, 034006 (2006)

    ADS  Article  Google Scholar 

  86. P. Russotto et al., J. Phys. Conf. Ser. 420, 012092 (2013)

    ADS  Article  Google Scholar 

  87. P. Russotto, M.D. Cozma, contribution to this Topical Issue

  88. W. Trautmann, contribution to this Topical Issue

  89. T. Kobayashi et al., Nucl. Instrum. Methods B 317, 294 (2013)

    ADS  Article  Google Scholar 

  90. B. Hong, contribution to this Topical Issue

  91. J.W. Xia et al., Nucl. Instrum. Methods A 488, 11 (2002)

    ADS  Article  Google Scholar 

  92. Z.G. Xiao et al., J. Phys. G: Nucl. Part. Phys. 36, 064040 (2009)

    ADS  Article  Google Scholar 

  93. M. Zhang et al., Chin. Phys. C 34, 1100 (2010)

    ADS  Article  Google Scholar 

  94. C.C. Guo et al., Sci. China A 55, 252 (2012)

    Article  Google Scholar 

  95. L. Ou et al., Phys. Rev. C 78, 044609 (2008)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Xiao.

Additional information

Communicated by A. Ramos

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Àngels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiao, ZG., Yong, GC., Chen, LW. et al. Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions. Eur. Phys. J. A 50, 37 (2014). https://doi.org/10.1140/epja/i2014-14037-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14037-6

Keywords

  • Neutron Star
  • Symmetry Energy
  • Pion Production
  • Double Ratio
  • Symmetric Nuclear Matter