Skip to main content

Symmetry energy from the nuclear collective motion: constraints from dipole, quadrupole, monopole and spin-dipole resonances

Abstract.

The experimental and theoretical studies of Giant Resonances, or more generally of the nuclear collective vibrations, are a well-established domain in which sophisticated techniques have been introduced and firm conclusions reached after an effort of several decades. From it, information on the nuclear equation of state can be extracted, albeit not far from usual nuclear densities. In this contribution, which complements other contributions appearing in this topical issue, we survey some of the constraints that have been extracted recently concerning the parameters of the nuclear symmetry energy. Isovector modes, in which neutrons and protons are in opposite phase, are a natural source of information and we illustrate the values of symmetry energy around saturation deduced from isovector dipole and isovector quadrupole states. The isotopic dependence of the isoscalar monopole energy has also been suggested to provide a connection to the symmetry energy: relevant theoretical arguments and experimental results are thoroughly discussed. Finally, we consider the case of the charge-exchange spin-dipole excitations in which the sum rule associated with the total strength gives in principle access to the neutron skin and thus, indirectly, to the symmetry energy.

This is a preview of subscription content, access via your institution.

References

  1. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  2. I. Vidaña et al., Phys. Rev. C 80, 045806 (2009)

    Article  ADS  Google Scholar 

  3. L. Trippa, G. Colò, E. Vigezzi, Phys. Rev. C 77, 061304(R) (2008)

    Article  ADS  Google Scholar 

  4. E. Lipparini, S. Stringari, Phys. Rep. 103, 1975 (1989)

    Google Scholar 

  5. G. Colò, N. Van Giai, H. Sagawa, Phys. Lett. B 363, 5 (1995)

    Article  ADS  Google Scholar 

  6. S.S. Dietrich, B.L. Berman, At. Data Nucl. Data Tables 38, 199 (1988)

    Article  ADS  Google Scholar 

  7. A. Klimkiewicz et al., Phys. Rev. C 76, 051603(R) (2007)

    Article  ADS  Google Scholar 

  8. N. Paar, D. Vretenar, E. Khan, G. Colò, Rep. Progr. Phys. 70, 691 (2007)

    Article  ADS  Google Scholar 

  9. D. Savran, T. Aumann, A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013)

    Article  ADS  Google Scholar 

  10. O. Wieland et al., Phys. Rev. Lett. 102, 092502 (2009)

    Article  ADS  Google Scholar 

  11. A. Carbone, G. Colò, A. Bracco, L. Cao, P.F. Bortignon, F. Camera, O. Wieland, Phys. Rev. C 81, 041301(R) (2010)

    Article  ADS  Google Scholar 

  12. B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000)

    Article  ADS  Google Scholar 

  13. S. Typel, B.A. Brown, Phys. Rev. C 64, 027302(R) (2001)

    Article  ADS  Google Scholar 

  14. R.J. Furnstahl, Nucl. Phys. A 706, 85 (2002)

    Article  ADS  Google Scholar 

  15. Y. Suzuki, K. Ikeda, H. Sato, Prog. Theor. Phys. 83, 180 (1980)

    Article  ADS  Google Scholar 

  16. W. Nazarewicz, P.-G. Reinhard, Phys. Rev. C 81, 051303(R) (2010)

    Article  ADS  Google Scholar 

  17. X. Roca-Maza, G. Pozzi, M. Brenna, K. Mizuyama, G. Colò, Phys. Rev. C 85, 024601 (2012)

    Article  ADS  Google Scholar 

  18. D. Vretenar, Y.F. Niu, N. Paar, J. Meng, Phys. Rev. C 85, 044317 (2012)

    Article  ADS  Google Scholar 

  19. D. Vretenar, N. Paar, P. Ring, T. Nikšić, Phys. Rev. C 65, 021301(R) (2001)

    Article  ADS  Google Scholar 

  20. A. Repko, P.-G. Reinhard, V.O. Nesterenko, J. Kvasil, Phys. Rev. C 87, 024305 (2013)

    Article  ADS  Google Scholar 

  21. T. Inakura, T. Nakatsukasa, K. Yabana, Phys. Rev. C 84, 021302 (2011)

    Article  ADS  Google Scholar 

  22. T. Inakura, T. Nakatsukasa, K. Yabana, Prog. Theo. Phys. Suppl. 196, 375 (2012)

    Article  ADS  Google Scholar 

  23. J. Piekarewicz, B.K. Agrawal, G. Colò, W. Nazarewicz, N. Paar, P.-G. Reinhard, X. Roca-Maza, D. Vretenar, Phys. Rev. C 85, 041302 (2012)

    Article  ADS  Google Scholar 

  24. X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X. Viñas, B.K. Agrawal, N. Paar, D. Vretenar, J. Piekarewicz, Phys. Rev. C 88, 024316 (2013)

    Article  ADS  Google Scholar 

  25. S.S. Henshaw, M.W. Ahmed, G. Feldman, A.M. Nathan, H.R. Weller, Phys. Rev. Lett. 107, 22501 (2011)

    Article  Google Scholar 

  26. X. Roca-Maza, M. Brenna, B.K. Agrawal, P.F. Bortignon, G. Colò, L. Cao, N. Paar, D. Vretenar, Phys. Rev. C 87, 034301 (2013)

    Article  ADS  Google Scholar 

  27. X. Roca-Maza, G. Colò, H. Sagawa, Phys. Rev. C 86, 031306(R) (2012)

    Article  ADS  Google Scholar 

  28. J.P. Blaizot, Phys. Rep. 64, 171 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Stringari, Phys. Lett. B 108, 232 (1982)

    Article  ADS  Google Scholar 

  30. J. Treiner et al., Nucl. Phys. A 371, 253 (1981)

    Article  ADS  Google Scholar 

  31. H. Sagawa et al., Phys. Rev. C 76, 034327 (2007)

    Article  ADS  Google Scholar 

  32. Lie-Wen Chen et al., Phys. Rev. C 80, 014322 (2009)

    Article  ADS  Google Scholar 

  33. D. Patel et al., Phys. Lett. B 718, 447 (2012)

    Article  ADS  Google Scholar 

  34. S. Yoshida, H. Sagawa, Phys. Rev. C 73, 044320 (2006)

    Article  ADS  Google Scholar 

  35. S. Yoshida, private communication

  36. M. Fujiwara et al., Nucl. Instrum. Methods Phys. Res. A 422, 484 (1999)

    Article  ADS  Google Scholar 

  37. D.H. Youngblood et al., Phys. Rev. C 69, 031305 (2004)

    Google Scholar 

  38. B. Bonin et al., Nucl. Phys. A 430, 349 (1984)

    Article  ADS  Google Scholar 

  39. M. Itoh et al., Phys. Rev. C 68, 064602 (2003)

    Article  ADS  Google Scholar 

  40. T. Li et al., Phys. Rev. Lett. 99, 162503 (2007)

    Article  ADS  Google Scholar 

  41. T. Li et al., Phys. Rev. C 81, 034309 (2010)

    Article  ADS  Google Scholar 

  42. B.K. Agrawal, S. Shlomo, V. Kim Au, Phys. Rev. C 68, 031304 (2003)

    Article  ADS  Google Scholar 

  43. G. Colò et al., Phys. Rev. C 70, 024307 (2004)

    Article  ADS  Google Scholar 

  44. B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005)

    Article  ADS  Google Scholar 

  45. S. Shlomo, V.M. Kolomietz, G. Colò, Eur. Phys. J. A 30, 23 (2006)

    Article  ADS  Google Scholar 

  46. G. Colò, Phys. Part. Nucl. 39, 286 (2008)

    Article  Google Scholar 

  47. J. Li, G. Colò, J. Meng, Phys. Rev. C 78, 064304 (2008)

    Article  ADS  Google Scholar 

  48. P. Veselý, J. Toivanen, B.G. Carlsson, J. Dobaczewski, N. Michel, A. Pastore, Phys. Rev. C 86, 024303 (2012)

    Article  ADS  Google Scholar 

  49. L. Cao, H. Sagawa, G. Colò, Phys. Rev. C 86, 054313 (2012)

    Article  ADS  Google Scholar 

  50. S.K. Patra et al., Phys. Rev. C 65, 044304 (2002)

    Article  ADS  Google Scholar 

  51. J. Piekarewicz, M. Centelles, Phys. Rev. C 79, 054311 (2009)

    Article  ADS  Google Scholar 

  52. J.M. Pearson, N. Chamel, S. Goriely, Phys. Rev. C 82, 037301 (2010)

    Article  ADS  Google Scholar 

  53. C. Gaarde et al., Nucl. Phys. A 369, 258 (1981)

    Article  ADS  Google Scholar 

  54. T. Wakasa, H. Sakai, H. Okamura, H. Otsu, S. Fujita, S. Ishida, N. Sakamoto, T. Uesaka, Y. Satou, M.B. Greenfield, K. Hatanaka, Phys. Rev. C 55, 2909 (1997)

    Article  ADS  Google Scholar 

  55. K. Yako et al., Phys. Lett. B 615, 193 (2005)

    Article  ADS  Google Scholar 

  56. K. Yako, H. Sagawa, H. Sakai, Phys. Rev. C 74, 051303(R) (2006)

    Article  ADS  Google Scholar 

  57. M. Ichimura, H. Sakai, T. Wakasa, Prog. Part. Nucl. Phys. 56, 446 (2006)

    Article  ADS  Google Scholar 

  58. A. Krasznahorkay et al., Phys. Rev. Lett. 82, 3216 (1999)

    Article  ADS  Google Scholar 

  59. H. Sagawa, S. Yoshida, Xian-Rong Zhou, K. Yako, H. Sakai, Phys. Rev. C 76, 024301 (2007)

    Article  ADS  Google Scholar 

  60. H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987)

    Article  ADS  Google Scholar 

  61. L. Ray, G.W. Hoffman, G.S. Blanpied, W.R. Coker, R.P. Liljestrand, Phys. Rev. C 18, 1756 (1978)

    Article  ADS  Google Scholar 

  62. L. Ray, G.W. Hoffman, W.R. Coker, Phys. Rep. 212, 223 (1992)

    Article  ADS  Google Scholar 

  63. S. Yoshida, H. Sagawa, Phys. Rev. C 69, 024318 (2004)

    Article  ADS  Google Scholar 

  64. T. Wakawa, talk given at the RCNP workshop on “Importance of Tensor Interactions in Nuclei and Hadron structure” (July 11-12, 2013, RCNP, Osaka, Japan)

  65. T. Wakasa et al., Phys. Rev. C 85, 064606 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Colò.

Additional information

Communicated by A. Ramos

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Àngels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colò, G., Garg, U. & Sagawa, H. Symmetry energy from the nuclear collective motion: constraints from dipole, quadrupole, monopole and spin-dipole resonances. Eur. Phys. J. A 50, 26 (2014). https://doi.org/10.1140/epja/i2014-14026-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14026-9

Keywords