Skip to main content

Relationship between the symmetry energy and the single-nucleon potential in isospin-asymmetric nucleonic matter

Abstract

In this contribution, we review the most important physics presented originally in our recent publications. Some new analyses, insights and perspectives are also provided. We showed recently that the symmetry energy E sym (ρ) and its density slope L(ρ) at an arbitrary density ρ can be expressed analytically in terms of the magnitude and momentum dependence of the single-nucleon potentials using the Hugenholtz-Van Hove (HVH) theorem. These relationships provide new insights about the fundamental physics governing the density dependence of nuclear symmetry energy. Using the isospin and momentum (k dependent MDI interaction as an example, the contribution of different terms in the single-nucleon potential to the E sym (ρ) and L(ρ) are analyzed in detail at different densities. It is shown that the behavior of E sym is mainly determined by the first-order symmetry potential U sym,1(ρ, k) of the single-nucleon potential. The density slope L(ρ) depends not only on the first-order symmetry potential U sym,1(ρ, k) but also on the second-order one U sym,2(ρ, k). Both the U sym,1(ρ, k) and U sym,2(ρ, k) at normal density ρ 0 are constrained by the isospin- and momentum-dependent nucleon optical potential extracted from the available nucleon-nucleus scattering data. The U sym,2(ρ, k) especially at high density and momentum affects significantly the L(ρ), but it is theoretically poorly understood and currently there is almost no experimental constraints known.

This is a preview of subscription content, access via your institution.

References

  1. B.A. Li, C.M. Ko, W. Bauer, Int. J. Mod. Phys. E 7, 147 (1998).

    ADS  Article  Google Scholar 

  2. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008).

    ADS  Article  Google Scholar 

  3. Bao-An Li, W. Udo Schröer (Editors) Isospin Physics in Heavy-Ion Collisions at Intermediate Energies (Nova Science Publishers, Inc., New York, 2001).

  4. J.M. Lattimer, M. Prakash, Science 304, 536 (2004).

    ADS  Article  Google Scholar 

  5. A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005).

    ADS  Article  Google Scholar 

  6. P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002).

    ADS  Article  Google Scholar 

  7. P.J. Siemens, Nucl. Phys. A 141, 225 (1970).

    ADS  Article  Google Scholar 

  8. C.-H. Lee, T.T. Kuo, G.Q. Li, G.E. Brown, Phys. Rev. C 57, 3488 (1998).

    ADS  Article  Google Scholar 

  9. A.W. Steiner, Phys. Rev. C 74, 045808 (2006).

    ADS  Article  Google Scholar 

  10. O. Sjöberg, Nucl. Phys. A 222, 161 (1974).

    ADS  Article  Google Scholar 

  11. B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000).

    ADS  Article  Google Scholar 

  12. V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005).

    ADS  Article  Google Scholar 

  13. M. Di Toro, V. Baran, M. Colonna, V. Greco, J. Phys. G: Nucl. Part. Phys. 37, 083101 (2010).

    ADS  Article  Google Scholar 

  14. K. Sumiyoshi, H. Toki, Astrophys. J. 422, 700 (1994).

    ADS  Article  Google Scholar 

  15. I. Bombaci, in Isospin Physics in Heavy-Ion Collisions at Intermediate Energies (Nova Science Publishers, Inc., New York, 2001) Chapt. 2.

  16. L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005).

    ADS  Article  Google Scholar 

  17. B.A. Li, L.W. Chen, Phys. Rev. C 72, 064611 (2005).

    ADS  Article  Google Scholar 

  18. M.B. Tsang, Yingxun Zhang, P. Danielewicz, M. Famiano, Zhuxia Li, W.G. Lynch, A.W. Steiner, Phys. Rev. Lett. 102, 122701 (2009).

    ADS  Article  Google Scholar 

  19. M. Centelles, X. Roca-Maza, X. Vinas, M. Warda, Phys. Rev. Lett. 102, 122502 (2009).

    ADS  Article  Google Scholar 

  20. J.B. Natowitz et al., Phys. Rev. Lett. 104, 202501 (2010).

    ADS  Article  Google Scholar 

  21. Z.G. Xiao, B.A. Li, L.W. Chen, G.C. Yong, M. Zhang, Phys. Rev. Lett. 102, 062502 (2009).

    ADS  Article  Google Scholar 

  22. C.B. Das, S. Das Gupta, C. Gale, B.A. Li, Phys. Rev. C 67, 034611 (2003).

    ADS  Article  Google Scholar 

  23. B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Phys. Rev. C 69, 011603(R) (2004).

    ADS  Article  Google Scholar 

  24. B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Nucl. Phys. A 735, 563 (2004).

    ADS  Article  Google Scholar 

  25. S. Ulrych, H. Müther, Phys. Rev. C 56, 1788 (1997).

    ADS  Article  Google Scholar 

  26. E.N.E. van Dalen, C. Fuchs, A. Faessler, Nucl. Phys. A 74, 227 (2004).

    Article  Google Scholar 

  27. W. Zuo, L.G. Cao, B.A. Li, U. Lombardo, C.W. Shen, Phys. Rev. C 72, 014005 (2005).

    ADS  Article  Google Scholar 

  28. S. Fritsch, N. Kaiser, W. Weise, Nucl. Phys. A 750, 259 (2005).

    ADS  Article  Google Scholar 

  29. J.A. McNeil, J.R. Shepard, S.J. Wallace, Phys. Rev. Lett. 50, 1439 (1983).

    ADS  Article  Google Scholar 

  30. L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. C 72, 064606 (2005).

    ADS  Article  Google Scholar 

  31. Z.H. Li, L.W. Chen, C.M. Ko, B.A. Li, H.R. Ma, Phys. Rev. C 74, 044613 (2006).

    ADS  Article  Google Scholar 

  32. J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, M.R. Strayer, Phys. Rev. C 68, 034324 (2003).

    ADS  Article  Google Scholar 

  33. V.R. Pandharipande, V.K. Garde, Phys. Lett. B 39, 608 (1972).

    ADS  Article  Google Scholar 

  34. R.B. Wiringa et al., Phys. Rev. C 38, 1010 (1988).

    ADS  Article  Google Scholar 

  35. M. Kutschera, Phys. Lett. B 340, 1 (1994).

    ADS  Article  Google Scholar 

  36. C. Xu, B.A. Li, L.W. Chen, Phys. Rev. C 82, 054607 (2010).

    ADS  Article  Google Scholar 

  37. C. Xu, B.A. Li, L.W. Chen, C.M. Ko, Nucl. Phys. A 865, 1 (2011).

    ADS  Article  Google Scholar 

  38. C. Xu, B.A. Li, Phys. Rev. C 81, 044603 (2010).

    ADS  Article  Google Scholar 

  39. C. Xu, B.A. Li, Phys. Rev. C 81, 064612 (2010).

    ADS  Article  Google Scholar 

  40. R. Chen, B.J. Cai, L.W. Chen, B.A. Li, X.H. Li, C. Xu, Phys. Rev. C 85, 024305 (2012).

    ADS  Article  Google Scholar 

  41. X.H. Li, B.J. Cai, L.W. Chen, R. Chen, B.A. Li, C. Xu, Phys. Lett. B 721, 101 (2013).

    ADS  Article  Google Scholar 

  42. Nuclear Density Functional Theory, Nuclear Structure Near the Limits of Stability (INT-05-3) September 26 to December 2, 2005, http://www.int.washington.edu/PROGRAMS/dft.html.

  43. B.J. Cai, L.W. Chen, Phys. Lett. B 711, 104 (2012).

    ADS  Article  Google Scholar 

  44. N.M. Hugenholtz, L. Van Hove, Physica 24, 363 (1958).

    ADS  Article  MATH  MathSciNet  Google Scholar 

  45. L. Satpathy, V.S. Uma Maheswari, R.C. Nayak, Phys. Rep. 319, 85 (1999).

    ADS  Article  Google Scholar 

  46. K.A. Brueckner, J. Dabrowski, Phys. Rev. 134, B722 (1964).

    ADS  Article  Google Scholar 

  47. J. Dabrowski, P. Haensel, Phys. Lett. B 42, 163 (1972).

    ADS  Article  Google Scholar 

  48. J. Dabrowski, P. Haensel, Phys. Rev. C 7, 916 (1973).

    ADS  Article  Google Scholar 

  49. J. Dabrowski, P. Haensel, Can. J. Phys. 52, 1768 (1974).

    ADS  Google Scholar 

  50. A.M. Lane, Nucl. Phys. 35, 676 (1962).

    Article  Google Scholar 

  51. J. Decharge, D. Gogny, Phys. Rev. C 21, 1568 (1980).

    ADS  Article  Google Scholar 

  52. Z.H. Li, L.W. Chen, C.M. Ko, B.A. Li, H.R. Ma, Phys. Rev. C 74, 044613 (2006).

    ADS  Article  Google Scholar 

  53. D.P. Murdock, C.J. Horowitz, Phys. Rev. C 35, 1442 (1987).

    ADS  Article  Google Scholar 

  54. J.A. McNeil, L. Ray, S.J. Wallace, Phys. Rev. C 27, 2123 (1983).

    ADS  Article  Google Scholar 

  55. E.N.E. van Dalen, C. Fuchs, A. Faessler, Phys. Rev. C 72, 065803 (2005).

    ADS  Article  Google Scholar 

  56. W. Zuo, U. Lombardo, H.-J. Schulze, Z.H. Li, Phys. Rev. C 74, 014317 (2006).

    ADS  Article  Google Scholar 

  57. M.A. Preston, R.K. Bhaduri, Structure of the Nucleus (Addison-Wesley, Reading, MA, 1975) p. 191--202.

  58. G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988).

    ADS  Article  Google Scholar 

  59. P.E. Hodgson, The Nucleon Optical Potential (World Scientific Publishing, Sigapore, 1994) p. 7.

  60. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979).

    ADS  Article  Google Scholar 

  61. C. Mahaux, R. Sartor, in Advances in Nuclear Physics, edited by J.W. Negele, E. Vogt, Vol. 20 (New York, Plenum, 1991), pp. 1-223.

  62. S. Hama, B.C. Clark, E.D. Cooper, H.S. Sherif, R.L. Mercer, Phys. Rev. C 41, 2737 (1990).

    ADS  Article  Google Scholar 

  63. A.J. Koning et al., Nucl. Phys. A 713, 231 (2003).

    ADS  Article  Google Scholar 

  64. J.-P. Jeukenne et al., Phys. Rev. C 43, 2211 (1991).

    ADS  Article  Google Scholar 

  65. J. Rapaport et al., Nucl. Phys. A 330, 15 (1979).

    ADS  Article  Google Scholar 

  66. R.P. De Vito, NSCL/MSU report-363 (1981).

  67. K. Kwiatkowski et al., Nucl. Phys. A 301, 349 (1978).

    ADS  Article  Google Scholar 

  68. D.M. Patterson et al., Nucl. Phys. A 263, 261 (1976).

    ADS  Article  Google Scholar 

  69. Y.L. Han et al., Phys. Rev. C 81, 024616 (2010).

    ADS  Article  Google Scholar 

  70. O.V. Bespalova et al., J. Phys. G 29, 1193 (2003).

    ADS  Article  Google Scholar 

  71. R.L. Varner et al., Phys. Rep. 201, 57 (1991).

    ADS  Article  Google Scholar 

  72. F.D. Becchetti, G.W. Greenlees, Phys. Rev. 182, 1190 (1969).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Xu.

Additional information

Communicated by A. Ramos

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Ángels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, C., Li, BA. & Chen, LW. Relationship between the symmetry energy and the single-nucleon potential in isospin-asymmetric nucleonic matter. Eur. Phys. J. A 50, 21 (2014). https://doi.org/10.1140/epja/i2014-14021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14021-2

Keywords

  • Nuclear Matter
  • Symmetry Energy
  • Saturation Density
  • Momentum Dependence
  • Symmetry Potential