Skip to main content
Log in

Explosive nucleosynthesis at strong magnetic field

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The effect of a strong magnetic field on the synthesis of chemical elements is considered at conditions of nuclear statistical equilibrium. The possibility to employ the produced radionuclides to probe the transient ultra-magnetized astrophysical plasma in supernovae and near neutron stars is analyzed. For iron group nuclides the magnetic modification of the nuclear structure shifts a maximum of nucleosynthesis products towards smaller mass numbers approaching titanium. Signals of 44Ti radioactive decay in the gamma-spectra of the supernova remnant Cassiopeia A are revealed from the Integral IBIS/ISGRI observational data. The determined gamma-ray fluxes for 44Sc* lines with energies 67.9keV and 78.4keV correspond to the initial 44Ti volume (3.3 +0.9−0.7 ) × 10−4 solar masses that corroborates the magnetic enhancement of isotope production at a field constrained on conditions of supernova explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.E. Woosley, A. Heger, T.A. Weaver, Rev. Mod. Phys. 74, 1015 (2002).

    Article  ADS  Google Scholar 

  2. G.S. Bisnovatyi-Kogan, Stellar Physics (Springer-Verlag, Berlin, 2011).

  3. V.N. Kondratyev, I.M. Kadenko, Mon. Not. R. Astron. Soc. 359, 927 (2005).

    Article  ADS  Google Scholar 

  4. V.N. Kondratyev, Phys. At. Nucl. 75, 1442 (2012).

    Article  Google Scholar 

  5. V.N. Kondratyev, EPJ Web of Conferences 38, 17008 (2012).

    Article  Google Scholar 

  6. V.N. Kondratyev, Bull. Univ. Kiev 3, 31 (2010).

    Google Scholar 

  7. S. Akiyama, C.J. Wheeler, D.L. Meier, I. Lichtenstadt, Astrophys. J. 584, 954 (2003).

    Article  ADS  Google Scholar 

  8. J.C. Wheeler, D.L. Meier, J.R. Wilson, Astrophys. J. 568, 807 (2002).

    Article  ADS  Google Scholar 

  9. M. Obergaulinger, M.A. Aloy, E. Müller, Astron. Astrophys. 450, 1107 (2005).

    Article  ADS  Google Scholar 

  10. S.G. Moiseenko, G.S. Bisnovatyi-Kogan, N.V. Ardeljan, Mon. Not. R. Astron. Soc. 370, 501 (2006).

    Article  ADS  Google Scholar 

  11. A. Burrows, L. Dessart, E. Livne, C.D. Ott, J. Murphy, Astrophys. J. 664, 416 (2007).

    Article  ADS  Google Scholar 

  12. T. Takiwaki, K. Kotake, K. Sato, Astrophys. J. 691, 1360 (2009).

    Article  ADS  Google Scholar 

  13. E.P. Mazets, S.V. Golenetskii, V.N. Il'inskii et al., Nature 282, 587 (1979).

    Article  ADS  Google Scholar 

  14. V.N. Kondratyev, Phys. Rev. Lett. 88, 221101 (2002) and JAERI-Research, Vol. 2001-057.

    Article  ADS  Google Scholar 

  15. V.N. Kondratyev, J. Nucl. Sci. Tech. 1 Suppl. 2, 550 (2002).

    Google Scholar 

  16. V.N. Kondratyev, J. Nucl. Radiochem. Sci. 3, 205 (2002).

    Article  Google Scholar 

  17. V.N. Kondratyev, Phys. Rev. C 69, 038801 (2004) and JAERI-Research, Vol. 2002-10.

    Article  ADS  Google Scholar 

  18. D. Pena Arteaga, M. Grasso, E. Khan, P. Ring, Phys. Rev. C 84, 045806 (2011).

    Article  ADS  Google Scholar 

  19. A. Bohr, B.R. Mottelson, Nuclear Structure (Benjamin, NY, 1969).

  20. P. Moeller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  21. V.N. Kondratyev, H.O. Lutz, Z. Phys. D 40, 210 (1997).

    Article  ADS  Google Scholar 

  22. V.N. Kondratyev, H.O. Lutz, S. Ayik, J. Chem. Phys. 106, 7766 (1997).

    Article  ADS  Google Scholar 

  23. N.B. Suntzeff, Astrophys. J. 384, L33 (1992).

    Article  ADS  Google Scholar 

  24. D.D.Clayton et al., Astrophys. J. 399, L141 (1992).

    Article  ADS  Google Scholar 

  25. N.N. Chugai, R.A. Chevalier, R.P. Kirshner, P.M. Challis, Astrophys. J. 483, 925 (1997).

    Article  ADS  Google Scholar 

  26. A. Jerkstrand, C. Fransson, C. Kozma, Astron. Astrophys. 530, A45 (2011).

    Article  ADS  Google Scholar 

  27. J. Larsson et al., Nature 474, 484 (2011).

    Article  ADS  Google Scholar 

  28. L.-S. The et al., Astron. Astrophys. 450, 1037 (2006).

    Article  ADS  Google Scholar 

  29. I. Ahmad et al., Phys. Rev. C 74, 065803 (2006).

    Article  ADS  Google Scholar 

  30. S.A. Grebenev, A.A. Lutovinov, S.S. Tsygankov, C. Winkler, Nature 490, 373 (2012).

    Article  ADS  Google Scholar 

  31. A.F. Iyudin et al., Astron. Astrophys. 284, L1 (1994).

    ADS  Google Scholar 

  32. J. Vink et al., Astrophys. J. 560, L79 (2001).

    Article  ADS  Google Scholar 

  33. M. Renaud et al., New Astron. Rev. 50, 540 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  34. F. Lebrun et al., Astron. Astrophys. 411, L141 (2003).

    Article  ADS  Google Scholar 

  35. V.N. Kondratyev, in Proceedings of the International Conference on Isomers INIR-2011 (JINR, E15,18-2012-15, Dubna, 2012) p. 91.

  36. http://virgo.bitp.kiev.ua.

  37. J.B. Elliott et al., Phys. Rev. C 87, 054622 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kondratyev.

Additional information

Communicated by S. Hands

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondratyev, V.N. Explosive nucleosynthesis at strong magnetic field. Eur. Phys. J. A 50, 7 (2014). https://doi.org/10.1140/epja/i2014-14007-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14007-0

Keywords

Navigation