Skip to main content

Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

Abstract.

A new technique has been developed at the TRIUMF’s TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of \( \beta\) \( \beta\) decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of 124Cs .

This is a preview of subscription content, access via your institution.

References

  1. W.C. Haxton, G.J. Stephenson, Prog. Part. Nucl. Phys. 12, 409 (1984)

    ADS  Article  Google Scholar 

  2. M. Doi, T. Kotani, E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985)

    ADS  Article  Google Scholar 

  3. H. Ejiri, J. Phys. Soc. Jpn. 74, 2101 (2005)

    ADS  Article  MATH  Google Scholar 

  4. F.T. Avignone, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 481 (2008)

    ADS  Article  Google Scholar 

  5. K. Zuber, J. Phys. G: Nucl. Part. Phys. 39, 124009 (2012)

    ADS  Article  Google Scholar 

  6. A.S. Barabash, Phys. Rev. C 81, 035501 (2010)

    ADS  Article  Google Scholar 

  7. J. Schechter, J.W.F. Valle, Phys. Rev. D 25, 2951 (1982)

    ADS  Article  Google Scholar 

  8. E. Takasugi, Phys. Lett. B 149, 372 (1984)

    ADS  Article  Google Scholar 

  9. V.M. Gehman, S.R. Elliott, J. Phys. G: Nucl. Part. Phys. 34, 667 (2007)

    ADS  Article  Google Scholar 

  10. J. Engel, G. Hagen, Phys. Rev. C 79, 064317 (2009)

    ADS  Article  Google Scholar 

  11. J. Barea, F. Iachello, Phys. Rev. C 79, 044301 (2009)

    ADS  Article  Google Scholar 

  12. T.R. Rodríguez, G. Martínez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010)

    ADS  Article  Google Scholar 

  13. P.K. Rath, R. Chandra, P.K. Raina et al., Phys. Rev. C 85, 014308 (2012)

    ADS  Article  Google Scholar 

  14. R. Chandra, K. Chaturvedi, P.K. Rath et al., EPL 86, 32001 (2009)

    ADS  Article  Google Scholar 

  15. J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

    ADS  Article  Google Scholar 

  16. F. Simkovic, L. Pacearescu, A. Faessler, Nucl. Phys. A 733, 321 (2004)

    ADS  Article  Google Scholar 

  17. J.H. Thies, T. Adachi, M. Dozono et al., Phys. Rev. C 86, 044309 (2012)

    ADS  Article  Google Scholar 

  18. J.H. Thies, D. Frekers, T. Adachi et al., Phys. Rev. C 86, 014304 (2012)

    ADS  Article  Google Scholar 

  19. H. Ejiri, J. Phys. Soc. Jpn. 78, 074201 (2009)

    ADS  Article  Google Scholar 

  20. H. Ejiri, J. Phys. Soc. Jpn. 81, 033201 (2012)

    ADS  Article  Google Scholar 

  21. D. Frekers, I. Tanihata, J. Dilling, Can. J. Phys. 85, 57 (2007)

    ADS  Article  Google Scholar 

  22. A. García, Y.-D. Chan, M.T.F. da Cruz et al., Phys. Rev. C 47, 2910 (1993)

    ADS  Article  Google Scholar 

  23. S.K.L. Sjue, D. Melconian, A. García et al., Phys. Rev. C 78, 064317 (2008)

    ADS  Article  Google Scholar 

  24. G. Savard, S. Becker, G. Bollen et al., Phys. Lett. A 158, 247 (1991)

    ADS  Article  Google Scholar 

  25. K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. 2013, 014017 (2013)

    Article  Google Scholar 

  26. J. Dilling, P. Bricault, M. Smith et al., Nucl. Instrum. Methods Phys. Res. Sec. B 204, 492 (2003)

    ADS  Article  Google Scholar 

  27. J. Dilling, R. Baartman, P. Bricault et al., Int. J. Mass Spectrom. 251, 198 (2006)

    ADS  Article  Google Scholar 

  28. M. Smith, L. Blomeley, P. Delheij et al., Hyperfine Interact. 173, 0304 (2006)

    Article  Google Scholar 

  29. T. Brunner, M. Smith, M. Brodeur et al., Nucl. Instrum. Methods Phys. Res. Sec. A 676, 32 (2012)

    ADS  Article  Google Scholar 

  30. G. Sikler, J.C. López-Urrutia, J. Dilling et al., Eur. Phys. J. A 25, 63 (2005)

    Article  Google Scholar 

  31. A. Lapierre, M. Brodeur, T. Brunner et al., Nucl. Instrum. Methods Phys. Res. Sec. A 624, 54 (2010)

    ADS  Article  Google Scholar 

  32. M. Brodeur, V. Ryjkov, T. Brunner et al., Int. J. Mass Spectrom. 310, 20 (2012)

    ADS  Article  Google Scholar 

  33. T. Brunner, M. Brodeur, S. Ettenauer et al., J. Phys.: Conf. Ser. 312, 072006 (2011)

    ADS  Google Scholar 

  34. M. Dombsky, P. Bricault, T. Hodges et al., Nucl. Phys. A 701, 486 (2002)

    ADS  Article  Google Scholar 

  35. P. Kunz, ISAC-I yield measurements - ISAC e-log entry July 21, 2009 at 1:10am (2009)

  36. T. Brunner, M. Brodeur, C. Champagne et al., Nucl. Instrum. Methods Phys. Res. Sec. B 266, 4643 (2008)

    ADS  Article  Google Scholar 

  37. J. Katakura, Z. Wu, Nucl. Data Sheets 109, 1655 (2008)

    ADS  Article  Google Scholar 

  38. K. Krane, Introductory Nuclear Physics (Wiley, 1987)

  39. T. Brunner, In-Trap Decay Spectroscopy for $\beta\beta$ Decays, PhD thesis, Technische Universität München, Munich, Germany (2011).

  40. G.F. Knoll, Radiation Detection and Measurement (Wiley, 2000)

  41. National Nuclear Data Center, LOGFT version 7.2 (2001)

  42. E. Schönfeld, H. Janßen, Nucl. Instrum. Methods Phys. Res. Sec. A 369, 527 (1996)

    ADS  Article  Google Scholar 

  43. A.C. Thompson, D.T. Attwood, E.M. Gullikson, The X-Ray Data Booklet (2009) URL http://xdb.lbl.gov/

  44. Y. Khazov, A. Rodionov, F. Kondev, Nucl. Data Sheets 112, 855 (2011)

    ADS  Article  Google Scholar 

  45. J. Katakura, K. Kitao, Nucl. Data Sheets 97, 765 (2002)

    ADS  Article  Google Scholar 

  46. D.A. Dahl, Int. J. Mass Spectrom. 200, 3 (2000)

    ADS  Article  Google Scholar 

  47. T. Brunner, M. Brodeur, P. Delheij et al., Hyperfine Interact. 199, 191 (2011)

    ADS  Article  Google Scholar 

  48. A. Lennarz, T. Brunner, C. Andreoiu, A. Chaudhuri, U. Chowdhury, P. Delheij, J. Dilling, S. Ettenauer, D. Frekers, A.T. Gallant, A. Grossheim, F. Jang, A.A. Kwiatkowski, T. Ma, E. Mané, M.R. Pearson, B.E. Schultz, M.C. Simon, V.V. Simon, Hyperfine Interact. (2013) DOI:10.1007/s10751-013-0893-7

  49. S. Ettenauer, T. Brunner, M. Brodeur et al., AIP Conf. Proc. 1182, 100 (2009)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Brunner.

Additional information

Communicated by J. Äystö

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brunner, T., Lapierre, A., Andreoiu, C. et al. Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements. Eur. Phys. J. A 49, 142 (2013). https://doi.org/10.1140/epja/i2013-13142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13142-4

Keywords

  • Time Slice
  • Trap Center
  • Nuclear Matrix Element
  • Decay Matrix Element
  • Passivated Implant Planar Silicon