Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

  • T. Brunner
  • A. Lapierre
  • C. Andreoiu
  • M. Brodeur
  • P. Delheji
  • S. Ettenauer
  • D. Frekers
  • A. T. Gallant
  • R. Gernhäuser
  • A. Grossheim
  • R. Krücken
  • A. Lennarz
  • D. Lunney
  • D. Mücher
  • R. Ringle
  • M. C. Simon
  • V. V. Simon
  • S. K. L. Sjue
  • K. Zuber
  • J. Dilling
Regular Article - Experimental Physics

Abstract.

A new technique has been developed at the TRIUMF’s TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of \( \beta\)\( \beta\) decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of 124Cs .

References

  1. 1.
    W.C. Haxton, G.J. Stephenson, Prog. Part. Nucl. Phys. 12, 409 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    M. Doi, T. Kotani, E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    H. Ejiri, J. Phys. Soc. Jpn. 74, 2101 (2005)ADSCrossRefMATHGoogle Scholar
  4. 4.
    F.T. Avignone, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 481 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    K. Zuber, J. Phys. G: Nucl. Part. Phys. 39, 124009 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    A.S. Barabash, Phys. Rev. C 81, 035501 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    J. Schechter, J.W.F. Valle, Phys. Rev. D 25, 2951 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    E. Takasugi, Phys. Lett. B 149, 372 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    V.M. Gehman, S.R. Elliott, J. Phys. G: Nucl. Part. Phys. 34, 667 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    J. Engel, G. Hagen, Phys. Rev. C 79, 064317 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    J. Barea, F. Iachello, Phys. Rev. C 79, 044301 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    T.R. Rodríguez, G. Martínez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    P.K. Rath, R. Chandra, P.K. Raina et al., Phys. Rev. C 85, 014308 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    R. Chandra, K. Chaturvedi, P.K. Rath et al., EPL 86, 32001 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    F. Simkovic, L. Pacearescu, A. Faessler, Nucl. Phys. A 733, 321 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    J.H. Thies, T. Adachi, M. Dozono et al., Phys. Rev. C 86, 044309 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J.H. Thies, D. Frekers, T. Adachi et al., Phys. Rev. C 86, 014304 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    H. Ejiri, J. Phys. Soc. Jpn. 78, 074201 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    H. Ejiri, J. Phys. Soc. Jpn. 81, 033201 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    D. Frekers, I. Tanihata, J. Dilling, Can. J. Phys. 85, 57 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    A. García, Y.-D. Chan, M.T.F. da Cruz et al., Phys. Rev. C 47, 2910 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    S.K.L. Sjue, D. Melconian, A. García et al., Phys. Rev. C 78, 064317 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    G. Savard, S. Becker, G. Bollen et al., Phys. Lett. A 158, 247 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. 2013, 014017 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Dilling, P. Bricault, M. Smith et al., Nucl. Instrum. Methods Phys. Res. Sec. B 204, 492 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    J. Dilling, R. Baartman, P. Bricault et al., Int. J. Mass Spectrom. 251, 198 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    M. Smith, L. Blomeley, P. Delheij et al., Hyperfine Interact. 173, 0304 (2006)CrossRefGoogle Scholar
  29. 29.
    T. Brunner, M. Smith, M. Brodeur et al., Nucl. Instrum. Methods Phys. Res. Sec. A 676, 32 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    G. Sikler, J.C. López-Urrutia, J. Dilling et al., Eur. Phys. J. A 25, 63 (2005)CrossRefGoogle Scholar
  31. 31.
    A. Lapierre, M. Brodeur, T. Brunner et al., Nucl. Instrum. Methods Phys. Res. Sec. A 624, 54 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Brodeur, V. Ryjkov, T. Brunner et al., Int. J. Mass Spectrom. 310, 20 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    T. Brunner, M. Brodeur, S. Ettenauer et al., J. Phys.: Conf. Ser. 312, 072006 (2011)ADSGoogle Scholar
  34. 34.
    M. Dombsky, P. Bricault, T. Hodges et al., Nucl. Phys. A 701, 486 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    P. Kunz, ISAC-I yield measurements - ISAC e-log entry July 21, 2009 at 1:10am (2009)Google Scholar
  36. 36.
    T. Brunner, M. Brodeur, C. Champagne et al., Nucl. Instrum. Methods Phys. Res. Sec. B 266, 4643 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    J. Katakura, Z. Wu, Nucl. Data Sheets 109, 1655 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    K. Krane, Introductory Nuclear Physics (Wiley, 1987)Google Scholar
  39. 39.
    T. Brunner, In-Trap Decay Spectroscopy for $\beta\beta$ Decays, PhD thesis, Technische Universität München, Munich, Germany (2011).Google Scholar
  40. 40.
    G.F. Knoll, Radiation Detection and Measurement (Wiley, 2000)Google Scholar
  41. 41.
    National Nuclear Data Center, LOGFT version 7.2 (2001)Google Scholar
  42. 42.
    E. Schönfeld, H. Janßen, Nucl. Instrum. Methods Phys. Res. Sec. A 369, 527 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    A.C. Thompson, D.T. Attwood, E.M. Gullikson, The X-Ray Data Booklet (2009) URL http://xdb.lbl.gov/
  44. 44.
    Y. Khazov, A. Rodionov, F. Kondev, Nucl. Data Sheets 112, 855 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    J. Katakura, K. Kitao, Nucl. Data Sheets 97, 765 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    D.A. Dahl, Int. J. Mass Spectrom. 200, 3 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    T. Brunner, M. Brodeur, P. Delheij et al., Hyperfine Interact. 199, 191 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    A. Lennarz, T. Brunner, C. Andreoiu, A. Chaudhuri, U. Chowdhury, P. Delheij, J. Dilling, S. Ettenauer, D. Frekers, A.T. Gallant, A. Grossheim, F. Jang, A.A. Kwiatkowski, T. Ma, E. Mané, M.R. Pearson, B.E. Schultz, M.C. Simon, V.V. Simon, Hyperfine Interact. (2013) DOI:10.1007/s10751-013-0893-7
  49. 49.
    S. Ettenauer, T. Brunner, M. Brodeur et al., AIP Conf. Proc. 1182, 100 (2009)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. Brunner
    • 1
    • 2
  • A. Lapierre
    • 1
  • C. Andreoiu
    • 3
  • M. Brodeur
    • 4
  • P. Delheji
    • 1
  • S. Ettenauer
    • 1
    • 5
  • D. Frekers
    • 6
  • A. T. Gallant
    • 1
    • 5
  • R. Gernhäuser
    • 2
  • A. Grossheim
    • 1
  • R. Krücken
    • 2
  • A. Lennarz
    • 1
    • 6
  • D. Lunney
    • 7
  • D. Mücher
    • 2
  • R. Ringle
    • 1
  • M. C. Simon
    • 1
  • V. V. Simon
    • 1
    • 8
    • 9
  • S. K. L. Sjue
    • 1
  • K. Zuber
    • 10
  • J. Dilling
    • 1
    • 5
  1. 1.TRIUMFVancouverCanada
  2. 2.Physik Department E12Technische Universität MünchenGarchingGermany
  3. 3.Department of ChemistrySimon Fraser UniversityBurnabyCanada
  4. 4.Department of PhysicsUniversity of Notre DameNotre DameUSA
  5. 5.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  6. 6.Westfälische Wilhelms-Universität MünsterMünsterGermany
  7. 7.CSNSM-IN2P3-CNRSUniversité de Paris SudOrsayFrance
  8. 8.Fakulät für Physik und AstronomieRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  9. 9.Max-Planck-Institut für KernphysikHeidelbergGermany
  10. 10.Institut für Kern- und TeilchenphysikTechnische Universität DresdenDresdenGermany

Personalised recommendations