Skip to main content
Log in

Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A new technique has been developed at the TRIUMF’s TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of \( \beta\) \( \beta\) decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of 124Cs .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Haxton, G.J. Stephenson, Prog. Part. Nucl. Phys. 12, 409 (1984)

    Article  ADS  Google Scholar 

  2. M. Doi, T. Kotani, E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985)

    Article  ADS  Google Scholar 

  3. H. Ejiri, J. Phys. Soc. Jpn. 74, 2101 (2005)

    Article  ADS  MATH  Google Scholar 

  4. F.T. Avignone, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 481 (2008)

    Article  ADS  Google Scholar 

  5. K. Zuber, J. Phys. G: Nucl. Part. Phys. 39, 124009 (2012)

    Article  ADS  Google Scholar 

  6. A.S. Barabash, Phys. Rev. C 81, 035501 (2010)

    Article  ADS  Google Scholar 

  7. J. Schechter, J.W.F. Valle, Phys. Rev. D 25, 2951 (1982)

    Article  ADS  Google Scholar 

  8. E. Takasugi, Phys. Lett. B 149, 372 (1984)

    Article  ADS  Google Scholar 

  9. V.M. Gehman, S.R. Elliott, J. Phys. G: Nucl. Part. Phys. 34, 667 (2007)

    Article  ADS  Google Scholar 

  10. J. Engel, G. Hagen, Phys. Rev. C 79, 064317 (2009)

    Article  ADS  Google Scholar 

  11. J. Barea, F. Iachello, Phys. Rev. C 79, 044301 (2009)

    Article  ADS  Google Scholar 

  12. T.R. Rodríguez, G. Martínez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010)

    Article  ADS  Google Scholar 

  13. P.K. Rath, R. Chandra, P.K. Raina et al., Phys. Rev. C 85, 014308 (2012)

    Article  ADS  Google Scholar 

  14. R. Chandra, K. Chaturvedi, P.K. Rath et al., EPL 86, 32001 (2009)

    Article  ADS  Google Scholar 

  15. J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

    Article  ADS  Google Scholar 

  16. F. Simkovic, L. Pacearescu, A. Faessler, Nucl. Phys. A 733, 321 (2004)

    Article  ADS  Google Scholar 

  17. J.H. Thies, T. Adachi, M. Dozono et al., Phys. Rev. C 86, 044309 (2012)

    Article  ADS  Google Scholar 

  18. J.H. Thies, D. Frekers, T. Adachi et al., Phys. Rev. C 86, 014304 (2012)

    Article  ADS  Google Scholar 

  19. H. Ejiri, J. Phys. Soc. Jpn. 78, 074201 (2009)

    Article  ADS  Google Scholar 

  20. H. Ejiri, J. Phys. Soc. Jpn. 81, 033201 (2012)

    Article  ADS  Google Scholar 

  21. D. Frekers, I. Tanihata, J. Dilling, Can. J. Phys. 85, 57 (2007)

    Article  ADS  Google Scholar 

  22. A. García, Y.-D. Chan, M.T.F. da Cruz et al., Phys. Rev. C 47, 2910 (1993)

    Article  ADS  Google Scholar 

  23. S.K.L. Sjue, D. Melconian, A. García et al., Phys. Rev. C 78, 064317 (2008)

    Article  ADS  Google Scholar 

  24. G. Savard, S. Becker, G. Bollen et al., Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  25. K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. 2013, 014017 (2013)

    Article  Google Scholar 

  26. J. Dilling, P. Bricault, M. Smith et al., Nucl. Instrum. Methods Phys. Res. Sec. B 204, 492 (2003)

    Article  ADS  Google Scholar 

  27. J. Dilling, R. Baartman, P. Bricault et al., Int. J. Mass Spectrom. 251, 198 (2006)

    Article  ADS  Google Scholar 

  28. M. Smith, L. Blomeley, P. Delheij et al., Hyperfine Interact. 173, 0304 (2006)

    Article  Google Scholar 

  29. T. Brunner, M. Smith, M. Brodeur et al., Nucl. Instrum. Methods Phys. Res. Sec. A 676, 32 (2012)

    Article  ADS  Google Scholar 

  30. G. Sikler, J.C. López-Urrutia, J. Dilling et al., Eur. Phys. J. A 25, 63 (2005)

    Article  Google Scholar 

  31. A. Lapierre, M. Brodeur, T. Brunner et al., Nucl. Instrum. Methods Phys. Res. Sec. A 624, 54 (2010)

    Article  ADS  Google Scholar 

  32. M. Brodeur, V. Ryjkov, T. Brunner et al., Int. J. Mass Spectrom. 310, 20 (2012)

    Article  ADS  Google Scholar 

  33. T. Brunner, M. Brodeur, S. Ettenauer et al., J. Phys.: Conf. Ser. 312, 072006 (2011)

    ADS  Google Scholar 

  34. M. Dombsky, P. Bricault, T. Hodges et al., Nucl. Phys. A 701, 486 (2002)

    Article  ADS  Google Scholar 

  35. P. Kunz, ISAC-I yield measurements - ISAC e-log entry July 21, 2009 at 1:10am (2009)

  36. T. Brunner, M. Brodeur, C. Champagne et al., Nucl. Instrum. Methods Phys. Res. Sec. B 266, 4643 (2008)

    Article  ADS  Google Scholar 

  37. J. Katakura, Z. Wu, Nucl. Data Sheets 109, 1655 (2008)

    Article  ADS  Google Scholar 

  38. K. Krane, Introductory Nuclear Physics (Wiley, 1987)

  39. T. Brunner, In-Trap Decay Spectroscopy for $\beta\beta$ Decays, PhD thesis, Technische Universität München, Munich, Germany (2011).

  40. G.F. Knoll, Radiation Detection and Measurement (Wiley, 2000)

  41. National Nuclear Data Center, LOGFT version 7.2 (2001)

  42. E. Schönfeld, H. Janßen, Nucl. Instrum. Methods Phys. Res. Sec. A 369, 527 (1996)

    Article  ADS  Google Scholar 

  43. A.C. Thompson, D.T. Attwood, E.M. Gullikson, The X-Ray Data Booklet (2009) URL http://xdb.lbl.gov/

  44. Y. Khazov, A. Rodionov, F. Kondev, Nucl. Data Sheets 112, 855 (2011)

    Article  ADS  Google Scholar 

  45. J. Katakura, K. Kitao, Nucl. Data Sheets 97, 765 (2002)

    Article  ADS  Google Scholar 

  46. D.A. Dahl, Int. J. Mass Spectrom. 200, 3 (2000)

    Article  ADS  Google Scholar 

  47. T. Brunner, M. Brodeur, P. Delheij et al., Hyperfine Interact. 199, 191 (2011)

    Article  ADS  Google Scholar 

  48. A. Lennarz, T. Brunner, C. Andreoiu, A. Chaudhuri, U. Chowdhury, P. Delheij, J. Dilling, S. Ettenauer, D. Frekers, A.T. Gallant, A. Grossheim, F. Jang, A.A. Kwiatkowski, T. Ma, E. Mané, M.R. Pearson, B.E. Schultz, M.C. Simon, V.V. Simon, Hyperfine Interact. (2013) DOI:10.1007/s10751-013-0893-7

  49. S. Ettenauer, T. Brunner, M. Brodeur et al., AIP Conf. Proc. 1182, 100 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Brunner.

Additional information

Communicated by J. Äystö

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, T., Lapierre, A., Andreoiu, C. et al. Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements. Eur. Phys. J. A 49, 142 (2013). https://doi.org/10.1140/epja/i2013-13142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13142-4

Keywords

Navigation