Skip to main content
Log in

GARFIELD + RCo digital upgrade: A modern set-up for mass and charge identification of heavy-ion reaction products

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

An upgraded GARFIELD + Ring Counter (RCo) apparatus is presented with improved performances as far as electronics and detectors are concerned. On the one hand fast sampling digital read out has been extended to all detectors, allowing for an important simplification of the signal processing chain together with an enriched extracted information. On the other hand a relevant improvement has been made in the forward part of the set-up (RCo): an increased granularity of the CsI(Tl) crystals and a higher homogeneity in the silicon detector resistivity. The renewed performances of the GARFIELD + RCo array make it suitable for nuclear reaction measurements both with stable and with Radioactive Ion Beams (RIB), like the ones planned for the SPES facility, where the physics of isospin can be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nupecc long range Plan 2010, www.nupecc.org.

  2. http://www.gsi.de/fair/index_e.html.

  3. http://ganil-spiral2.fr/.

  4. http://isolde.web.cern.ch/ISOLDE/.

  5. E. Rapisarda et al., Eur. Phys. J. ST 150, 169 (2007).

    Article  Google Scholar 

  6. http://www.lns.infn.it.

  7. http://www.lnl.infn.it/~spes/.

  8. http://www.eurisol.org/site02/index.php.

  9. S. Aiello et al., Nucl. Phys. A 583, 461c (1995).

    Article  ADS  Google Scholar 

  10. A. Pagano et al., Nucl. Phys. A 734, 504 (2004).

    Article  ADS  Google Scholar 

  11. A. Pagano, Nucl. Phys. News 22, 28 (2012).

    Google Scholar 

  12. J. Pouthas et al., Nucl. Instrum. Methods A 357, 418 (1995).

    Article  ADS  Google Scholar 

  13. S. Wuenschel et al., Nucl. Instrum. Methods A 604, 578 (2009).

    Article  ADS  Google Scholar 

  14. M.S. Wallace et al., Nucl. Instrum. Methods A 583, 302 (2007).

    Article  ADS  Google Scholar 

  15. C.A.J. Amerlaan et al., Nucl. Instrum. Methods 22, 189 (1963).

    Article  ADS  Google Scholar 

  16. G. Pausch et al., Nucl. Instrum. Methods A 322, 43 (1992).

    Article  ADS  Google Scholar 

  17. M. Mutterer et al., Nucl. Instrum. Methods A 608, 275 (2009).

    Article  ADS  Google Scholar 

  18. J.A. Duenas et al., Nucl. Instrum. Methods A 676, 70 (2012).

    Article  ADS  Google Scholar 

  19. FAZIA Collaboration, www.fazia2.in2p3.fr/spip.

  20. F. Gramegna et al., Nucl. Instrum. Methods A 389, 474 (1997).

    Article  ADS  Google Scholar 

  21. F. Gramegna et al., IEEE Nucl. Sci. Symp. Conf. Proc. 2, 1132 (2004) DOI:10.1109/NSSMIC.2004.1462402.

    Google Scholar 

  22. A. Moroni et al., Nucl. Instrum. Methods A 556, 516 (2006).

    Article  ADS  Google Scholar 

  23. M. Chiari et al., Nucl. Instrum. Methods A 484, 111 (2002).

    Article  ADS  Google Scholar 

  24. A. Wagner et al., Nucl. Instrum. Methods A 456, 290 (2001).

    Article  ADS  Google Scholar 

  25. L. Morelli et al., Nucl. Instrum. Methods A 620, 305 (2010).

    Article  ADS  Google Scholar 

  26. V.L. Kravchuck et al., Int. J. Mod. Phys. E 20, 1050 (2011).

    Article  ADS  Google Scholar 

  27. M. Bini et al., Nucl. Instrum. Methods A 515, 497 (2003).

    Article  ADS  Google Scholar 

  28. A. Maj et al., Nucl. Phys. A 571, 185 (1994).

    Article  ADS  Google Scholar 

  29. M. Kmiecik et al., Phys. Rev. C 70, 054317 (2004).

    Article  Google Scholar 

  30. O. Wieland et al., Phys. Rev. Lett. 97, 012501 (2006).

    Article  ADS  Google Scholar 

  31. A. Corsi et al., Phys. Rev. C 84, 041304 (2011).

    Article  ADS  Google Scholar 

  32. S. Barlini et al., Acta Phys. Pol. B 42, 639 (2011).

    Article  Google Scholar 

  33. A. Corsi et al., Phys. Lett. B 679, 197 (2009).

    Article  ADS  Google Scholar 

  34. M. D’Agostino et al., Nucl. Phys. A 861, 47 (2011).

    Article  ADS  Google Scholar 

  35. M. D’Agostino et al., Nucl. Phys. A 875, 139 (2012).

    Article  ADS  Google Scholar 

  36. G. Baiocco et al., Phys. Rev. C 87, 054614 (2013).

    Article  ADS  Google Scholar 

  37. G. Pasquali et al., Nucl. Instrum. Methods A 570, 126 (2007).

    Article  ADS  Google Scholar 

  38. S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012).

    Article  ADS  Google Scholar 

  39. Purchased from Canberra Olen (Belgium).

  40. R. Bassini et al., Nucl. Instrum. Methods A 305, 449 (1991).

    Article  ADS  Google Scholar 

  41. A. Ordine et al., IEEE Trans. Nucl. Sci. NS45(3), 873 (1998).

    Article  ADS  Google Scholar 

  42. F. Benrachi et al., Nucl. Instrum. Methods A 281, 137 (1989).

    Article  ADS  Google Scholar 

  43. L. Bardelli et al., Nucl. Instrum. Methods A 560, 517 (2006).

    Article  ADS  Google Scholar 

  44. L. Bardelli et al., Nucl. Instrum. Methods A 560, 524 (2006).

    Article  ADS  Google Scholar 

  45. B. Onori, 3-year thesis Bologna University (2010).

  46. M. Bruno, 2009 INFN-LNL Annual Report.

  47. F. Tonetto et al., Nucl. Instrum. Methods A 420, 181 (1999).

    Article  ADS  Google Scholar 

  48. L. Bardelli et al., Nucl. Instrum. Methods A 521, 480 (2004).

    Article  ADS  Google Scholar 

  49. N. Leneindre et al., Nucl. Instrum. Methods A 490, 251 (2002).

    Article  ADS  Google Scholar 

  50. P.F. Mastinu, P.M. Milazzo, M. Bruno, M. D’Agostino, Nucl. Instrum. Methods A 371, 510 (1996).

    Article  ADS  Google Scholar 

  51. M. Alderighi et al., Nucl. Instrum. Methods A 489, 257 (2002).

    Article  ADS  Google Scholar 

  52. S. Carboni et al., Nucl. Instrum. Methods A 664, 251 (2012).

    Article  ADS  Google Scholar 

  53. R.A. Winyard et al., Nucl. Instrum. Methods 95, 141 (1971).

    Article  ADS  Google Scholar 

  54. L. Bardelli et al., Nucl. Instrum. Methods A 602, 501 (2009).

    Article  ADS  Google Scholar 

  55. L. Bardelli et al., Nucl. Instrum. Methods A 654, 272 (2011).

    Article  ADS  Google Scholar 

  56. N. LeNeindre et al., Nucl. Instrum. Methods A 701, 145 (2013).

    Article  ADS  Google Scholar 

  57. M. Degerlier Eurisol Town Meeting, Pisa, Italy (2009).

    Article  ADS  Google Scholar 

  58. S. Sambi, 3-year thesis, http://www.bo.infn.it/nucl-ex/Tesi%20Sara.pdf.

  59. Supplied by MILLIPORE Italia SpA.

  60. M. Barbui et al., Nucl. Instrum. Methods B 268, 2377 (2010).

    Article  ADS  Google Scholar 

  61. M. Zadro et al., Nucl. Instrum. Methods B 259, 836 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bruno.

Additional information

Communicated by C. Broggini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, M., Gramegna, F., Marchi, T. et al. GARFIELD + RCo digital upgrade: A modern set-up for mass and charge identification of heavy-ion reaction products. Eur. Phys. J. A 49, 128 (2013). https://doi.org/10.1140/epja/i2013-13128-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13128-2

Navigation